期刊文献+
共找到487篇文章
< 1 2 25 >
每页显示 20 50 100
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
1
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Research progress of high-entropy cathode materials for sodium-ion batteries 被引量:1
2
作者 Fan Wu Shaoyang Wu +2 位作者 Xin Ye Yurong Ren Peng Wei 《Chinese Chemical Letters》 2025年第4期20-33,共14页
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well... In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected. 展开更多
关键词 High-entropy material Sodium-ion battery cathode materials Phase transition Structure
原文传递
Facile regeneration of spent lithium-ion battery cathode materials via tunable oxidization and reduction strategy 被引量:1
3
作者 Xue-hu ZHONG Wen-qing QIN +1 位作者 Jiang ZHOU Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第2期653-668,共16页
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t... A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles. 展开更多
关键词 spent lithium-ion batteries direct regeneration cathode materials ROASTING circular economy
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
4
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering cathode materials Ion migration
在线阅读 下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
5
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) cathode materials Electrochemical performance Optimization strategies
在线阅读 下载PDF
High voltage cathode materials for rechargeable magnesium batteries:Structural aspects and electrochemical perspectives
6
作者 Dedy Setiawan Jiwon Hwang +1 位作者 Munseok S.Chae Seung-Tae Hong 《Journal of Magnesium and Alloys》 2025年第9期4167-4188,共22页
Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a m... Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes. 展开更多
关键词 gravimetric capacity cathode material energy storage high voltage cathode materials anode material structural aspects lithiumion batteries libs rechargeable magnesium batteries
在线阅读 下载PDF
First-Principles Study of Layered Anti-Perovskite Cathode Materials for Sodium-Ion Batteries
7
作者 Xi-Ping Wu Yu Zhang +7 位作者 Yang-Zhong Li Tao Lin Qin-Rui Zheng Rui Lin Jian-Ting Liu Qi-Men Xu Di-Xing Ni Li shuai 《Chinese Physics Letters》 2025年第8期354-369,共16页
Sodium-ion batteries have emerged as promising alternatives to lithium-ion batteries due to their abundant raw material reserves,low cost,enhanced safety,and environmental sustainability.Na_(2)Fe_(2)OS_(2),featuring a... Sodium-ion batteries have emerged as promising alternatives to lithium-ion batteries due to their abundant raw material reserves,low cost,enhanced safety,and environmental sustainability.Na_(2)Fe_(2)OS_(2),featuring a layered anti-perovskite structure,has attracted significant interest for its high capacity and facile synthesis.In this study,density functional theory calculations were performed to systematically investigate the phase stability,ionic conductivity,and voltage characteristics of Na_(2)Fe_(2)OS_(2)as a model system for anti-perovskite layered cathode materials.The compound exhibits excellent phase stability,and its equilibrium potential was calculated for the series Na_(x)Fe_(2)OCh_(2)(0<±<2)(where Ch represents chalcogenides).Naion transport analysis using the climbing image nudged elastic band method reveals a relatively low migration barrier(~0.47eV)along a dingonal pathway,indicating efficient Na^(+)mobility.To expand the materials design space,we systematically explored the effects of substituting Fe with various transition metals and replacing S with Se in NaaTM_(2)OCh_(2)structures.Among the variants studied,Na_(2)Mn_(2)OS_(2) demonstrates the most favorable combination of high voltage(~2.51V),robust phase stability,and superior energy density(~427 W-h/kg).This comprehensive comparison of transition metal substitutions provides vnluable insights for the rational design and experimental development of next-generation anti-perovskite layered cathode materials for sodium-ion batteries. 展开更多
关键词 phase stabilityionic conductivityand phase stability layered anti perovskite cathode materials transition metal substitutions voltage characteristics sodium ion batteries density functional theory functional theory calculations
原文传递
Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries
8
作者 Na Li Wenxue Wang +3 位作者 Peng Wang Zhanying Sun Xinlong Tian Xiaodong Shi 《Chinese Chemical Letters》 2025年第3期476-482,共7页
Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dua... Sluggish conversion reaction kinetics and spontaneous shuttle effect of lithium polysulfides(LiPSs)are deemed as the two big mountains that hinder the practical application of lithium-sulfur batteries(LSBs).Herein,dual-defect engineering strategy is implemented by introducing boron-doping and phosphorusvacancy sites with MoP@NC composite as the precursor.Based on the experimental characterizations and theoretical calculations,B-MoP_(1-x)@NC-based electrode presents low oxidation potential,high lithium diffusivity,small Tafel slope and strong adsorption capability for polysulfides,which is beneficial to enhance the adsorption capability for LiPSs,reduce the lithium diffusion energy barriers and Gibbs free energy for the conversion reactions of LiPSs.As demonstrated,the corresponding Li-S/B-MoP1-x@NC batteries can remain high reversible capacity of 753 mAh/g at 0.5 C after 300 cycles,and keep a stable capacity of 520 mAh/g at 0.5 C after 100 cycles even at the high-loading content of 5.1mg/cm^(2).According to the results of in-situ UV–vis spectra,the satisfactory battery performance majorly originates from the existence of dual-defect characteristics in B-MoP1-x@NC catalyst,which effectively promotes the conversion reaction kinetics of LiPSs,and restrains the shuttle behavior of LiPSs.The key ideas of this work will enlighten the development of catalytic cathode materials for sulfur-based secondary batteries. 展开更多
关键词 Dual-defect engineering Boron doping Phosphorus vacancy Catalytic cathode materials Lithium-sulfur batteries
原文传递
Valorization of spent lithium-ion battery cathode materials for energy conversion reactions
9
作者 Jin Zhang Ding Chen +2 位作者 Jixiang Jiao Weihao Zeng Shichun Mu 《Green Energy & Environment》 2025年第7期1461-1480,共20页
With large-scale commercial applications of lithium-ion batteries(LIBs),lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems.Thus,recycling spent LIB mater... With large-scale commercial applications of lithium-ion batteries(LIBs),lots of spent LIBs will be produced and cause huge waste of resources and greatly increased environmental problems.Thus,recycling spent LIB materials is inevitable.Due to high added-value features,converting spent LIB cathode materials into catalysts exhibits broad application prospects.Inspired by this,we review the high-added-value reutilization of spent LIB materials toward catalysts of energy conversion.First,the failure mechanism of spent LIB cathode materials are discussed,and then the transformation and modification strategies are summarized and analyzed to improve the transformation efficiency of failed cathode materials and the catalytic performance of catalysts,respectively.Moreover,the electrochemical applications of failed cathode material derived catalysts are introduced,and the key problems and countermeasures are analyzed and proposed.Finally,the future development trend and prospect of high-added-value reutilization for spent LIB cathode materials toward catalysts are also given.This review will predictably advance the awareness of valorizing spent lithium-ion battery cathode materials for catalysis. 展开更多
关键词 Spent lithium-ion batteries cathode materials High added-value use CATALYSTS Energy conversion
在线阅读 下载PDF
AI-driven accelerated discovery of intercalation-type cathode materials for magnesium batteries
10
作者 Wenjie Chen Zichang Lin +2 位作者 Xinxin Zhang Hao Zhou Yuegang Zhang 《Journal of Energy Chemistry》 2025年第9期40-46,I0003,共8页
Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performa... Magnesium-ion batteries hold promise as future energy storage solutions,yet current Mg cathodes are challenged by low voltage and specific capacity.Herein,we present an AI-driven workflow for discovering high-performance Mg cathode materials.Utilizing the common characteristics of various ionic intercalation-type electrodes,we design and train a Crystal Graph Convolutional Neural Network model that can accurately predict electrode voltages for various ions with mean absolute errors(MAE)between0.25 and 0.33 V.By deploying the trained model to stable Mg compounds from Materials Project and GNoME AI dataset,we identify 160 high voltage structures out of 15,308 candidates with voltages above3.0 V and volumetric capacity over 800 mA h/cm^(3).We further train a precise NequIP model to facilitate accurate and rapid simulations of Mg ionic conductivity.From the 160 high voltage structures,the machine learning molecular dynamics simulations have selected 23 cathode materials with both high energy density and high ionic conductivity.This Al-driven workflow dramatically boosts the efficiency and precision of material discovery for multivalent ion batteries,paving the way for advanced Mg battery development. 展开更多
关键词 Magnesium-ion batteries Interpretable machine learning AI-driven workflow Material screening Intercalation cathode materials
在线阅读 下载PDF
Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries
11
作者 Xiangyue Li Dexin Zhu +5 位作者 Kunmin Pan Xiaoye Zhou Jiaming Zhu Yingxue Wang Yongpeng Ren Hong-Hui Wu 《Chinese Chemical Letters》 2025年第5期691-694,共4页
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr... Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability. 展开更多
关键词 LNCM ternary cathode material Discharge capacity Feature engineering Machine learning SHAP analysis
原文传递
Recent progress of Prussian blue analogues as cathode materials for metal ion secondary batteries
12
作者 Xin-Yuan Fu Lu-Lu Zhang +2 位作者 Cheng-Cheng Wang Hua-Bin Sun Xue-Lin Yang 《Rare Metals》 2025年第1期34-59,共26页
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec... With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction. 展开更多
关键词 Prussian blue analogs cathode material Metal-ion secondary batteries Synthesis method Modification strategy
原文传递
Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery 被引量:5
13
作者 Shao-Le Song Run-Qing Liu +3 位作者 Miao-Miao Sun Ai-Gang Zhen Fan-Zhen Kong Yue Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1275-1287,共13页
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho... The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application. 展开更多
关键词 Spent lithium-ion battery Blended cathode materials RECOVERY Lithium carbonate Iron phosphate
原文传递
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:4
14
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
在线阅读 下载PDF
Research progresses on cathode materials of aqueous zinc-ion batteries 被引量:2
15
作者 Zengyuan Fan Jiawei Wang +3 位作者 Yunpeng Wu Xuedong Yan Dongmei Dai Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期237-264,I0005,共29页
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold ... Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs)have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn~(2+),in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries cathode materials Optimization strategies
在线阅读 下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
16
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
在线阅读 下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
17
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability Lithium-ion battery
在线阅读 下载PDF
Decoding Li^(+)/H^(+)ion exchange route toward low-temperature synthesis of layered oxide cathode materials for lithium-ion batteries
18
作者 Pei-Yao Li Ying-De Huang +6 位作者 Yu-Hong Luo Han-Xin Wei Rui Luo Lin-Bo Tang He-Zhang Chen Xia-Hui Zhang Jun-Chao Zheng 《Rare Metals》 CSCD 2024年第12期6329-6339,共11页
The synthesis of layered oxide cathode materials by the traditional high-temperature ceramic method usually requires calcination and annealing at temperatures in the range of 700-1000℃,with high energy consumption an... The synthesis of layered oxide cathode materials by the traditional high-temperature ceramic method usually requires calcination and annealing at temperatures in the range of 700-1000℃,with high energy consumption and serious cation mixing problems.Herein,we present a novel hydrothermalLi^(+)/H^(+)exchange method for the preparation of layered oxide cathodes at temperatures as low as 200℃.In contrast to the widely reported Li^(+)/Na^(+)exchange method using sodium-containing:precursors,layered oxide cathodes can be directly synthesized by hydrothermal reaction between commercial hydroxide precursors and LiOH·H2O.The reaction pathway consists of two steps.(1)The hydroxyl oxide intermediate is obtained by oxidizing the hydroxide precursor.(2)The layered oxide product is obtained by theLi^(+)/H^(+)exchange reaction of the hydroxyl oxide with Li+in solution.Through studying the time-resolved structural evolution,we reveal that the mechanism of material formation duringLi^(+)/H^(+)ion exchange is in situ crystallization,and the ion exchange process is accompanied by lattice distortion caused by internal diffusion of ions.These findings not only provide valuable insights into theLi^(+)/H^(+)exchange process,but also provide a new paradigm for the lowtemperature synthesis of advanced cathode materials. 展开更多
关键词 Lithium-ion battery cathode materials Ion exchange
原文传递
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
19
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary cathode materials Electrochemical Performance
在线阅读 下载PDF
Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials 被引量:5
20
作者 Juan Wu Li Xiao +4 位作者 Li Shen Jian-Jun Ran Hui Zhong Yi-Rong Zhu Han Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期879-899,共21页
The rapidly increasing production of lithium-ion batteries(LIBs)and their limited service time increases the number of spent LIBs,eventually causing serious environmental issues and resource wastage.From the perspecti... The rapidly increasing production of lithium-ion batteries(LIBs)and their limited service time increases the number of spent LIBs,eventually causing serious environmental issues and resource wastage.From the perspectives of clean production and the development of the LIB industry,the effective recovery and recycling of spent LIBs require urgent solutions.This study provides an overview of the current hydrometallurgical processes employed in the recycling of spent cathode materials,focusing on the leaching of valuable metals and their postprocessing.In particular,this research reviews the various leaching systems(inorganic acid,organic acid,and ammonia)and the separation of valuable metals,and then,recommendations for subsequent study are offered in an attempt to contribute to the development of highly efficient methods for recycling spent cathode materials.In addition,a range of existing technologies,such as solvent extraction,chemical precipitation,electrochemical deposition,and regeneration,for the postprocessing of leaching solutions are summarized.Finally,the promising technologies,existing challenges and suggestions with respect to the development of effective and environmentally friendly recycling methods for handling spent cathode materials are identified. 展开更多
关键词 Spent lithium-ion batteries(LIBs) cathode material HYDROMETALLURGY LEACHING RECYCLING
原文传递
上一页 1 2 25 下一页 到第
使用帮助 返回顶部