The insufficient electrocatalytic activity and CO_(2)resistance hinder the application of cathode mate-rial for solid oxide fuel cells(SOFCs).In this study,we introduce a series of Pr-doped perovskite Bi_(0.8-x)Pr_(x)...The insufficient electrocatalytic activity and CO_(2)resistance hinder the application of cathode mate-rial for solid oxide fuel cells(SOFCs).In this study,we introduce a series of Pr-doped perovskite Bi_(0.8-x)Pr_(x)Ca_(0.2)FeO_(3-δ)(BPCF_(x),x=0,0.10,0.15,0.20)as candidate cathode materials,with a focus on its phase structure,oxygen desorption ability,catalytic activity,and electrochemical reduction kinetics.Among all the components,the Bi_(0.6)Pr_(0.2)Ca_(0.2)FeO_(3-δ)(BPCF0.20)catalyst shows impressive oxygen reduc-tion reaction(ORR)activity,with a low polarization resistance of 0.06Ωcm^(2)at 700℃and peak power density of 810 mW cm^(−2)at 800℃.Moreover,the BPCF0.20 cathode shows outstanding CO_(2)resistance in different CO_(2)concentrations(1%-10%)due to the larger average bond energy and higher relative acidity of Bi,Pr,and Fe ions.These findings demonstrate that BPCF_(x)are advanced cathode electrocatalysts for SOFCs.展开更多
Lithium-sulfur batteries are promising candidates for next-generation energy storage but are confronted with several challenges. One of the possible solutions is to design proper cathode electrocatalysts to accelerate...Lithium-sulfur batteries are promising candidates for next-generation energy storage but are confronted with several challenges. One of the possible solutions is to design proper cathode electrocatalysts to accelerate the redox interconversion of solvated polysulfide intermediates. Herein, we report cobalt atoms dispersed on hierarchical carbon nitride support as an effective cathode electrocatalyst for lithium-polysulfide batteries. The electrocatalyst material is prepared from the simple reaction between melamine and cyanuric acid in the presence of Co^2+, followed by the Ar annealing. The product has a unique hierarchical structure consisting of many thin and porous C3 N4 nanosheets finely dispersed with Co atoms. The atomic dispersion of Co species is confirmed by X-ray absorption experiments.Electrochemical measurements reveal that it can promote the interconversion of polysulfides. As a result,batteries using this cathode electrocatalyst achieve large capacity($1400 mAh/g at 1.6 mA/cm^2), good rate performance($800 mAh/g at 12.8 mA/cm^2) and impressive cycling stability under different current densities and different sulfur loadings.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province(No.ZD2022E007).
文摘The insufficient electrocatalytic activity and CO_(2)resistance hinder the application of cathode mate-rial for solid oxide fuel cells(SOFCs).In this study,we introduce a series of Pr-doped perovskite Bi_(0.8-x)Pr_(x)Ca_(0.2)FeO_(3-δ)(BPCF_(x),x=0,0.10,0.15,0.20)as candidate cathode materials,with a focus on its phase structure,oxygen desorption ability,catalytic activity,and electrochemical reduction kinetics.Among all the components,the Bi_(0.6)Pr_(0.2)Ca_(0.2)FeO_(3-δ)(BPCF0.20)catalyst shows impressive oxygen reduc-tion reaction(ORR)activity,with a low polarization resistance of 0.06Ωcm^(2)at 700℃and peak power density of 810 mW cm^(−2)at 800℃.Moreover,the BPCF0.20 cathode shows outstanding CO_(2)resistance in different CO_(2)concentrations(1%-10%)due to the larger average bond energy and higher relative acidity of Bi,Pr,and Fe ions.These findings demonstrate that BPCF_(x)are advanced cathode electrocatalysts for SOFCs.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsCollaborative Innovation Center of Suzhou Nano Science and Technology
文摘Lithium-sulfur batteries are promising candidates for next-generation energy storage but are confronted with several challenges. One of the possible solutions is to design proper cathode electrocatalysts to accelerate the redox interconversion of solvated polysulfide intermediates. Herein, we report cobalt atoms dispersed on hierarchical carbon nitride support as an effective cathode electrocatalyst for lithium-polysulfide batteries. The electrocatalyst material is prepared from the simple reaction between melamine and cyanuric acid in the presence of Co^2+, followed by the Ar annealing. The product has a unique hierarchical structure consisting of many thin and porous C3 N4 nanosheets finely dispersed with Co atoms. The atomic dispersion of Co species is confirmed by X-ray absorption experiments.Electrochemical measurements reveal that it can promote the interconversion of polysulfides. As a result,batteries using this cathode electrocatalyst achieve large capacity($1400 mAh/g at 1.6 mA/cm^2), good rate performance($800 mAh/g at 12.8 mA/cm^2) and impressive cycling stability under different current densities and different sulfur loadings.