Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne...Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).展开更多
Zinc-ion batteries(ZIBs)have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity.However,ZIBs face several challenges,such as cathode capacity ...Zinc-ion batteries(ZIBs)have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity.However,ZIBs face several challenges,such as cathode capacity degradation and short cycle life.Ordinary metal–organic frameworks(MOFs)are characterized by high specific surface areas,large pore channels,and controllable structures and functions,making them suitable for use in ZIB cathodes with good performance.However,the insulating properties of MOFs hinder their further development.In contrast,electronic conductive MOFs(EC-MOFs)show high electronic conductivity,which facilitates rapid electron transport and ameliorates the charging and discharging efficiency of ZIBs.This paper introduces the unique conduction mechanism of EC-MOFs and elaborates various strategies for constructing EC-MOFs with high conductivity and stability.Additionally,the synthesis methods of EC-MOF-based cathode materials and their properties in ZIBs are elucidated.Finally,this paper presents a summary and outlook on the advancements of EC-MOFs for ZIB cathodes.This review provides guidance for designing and applying EC-MOFs in ZIBs and other energy storage devices.展开更多
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec...With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.展开更多
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron...The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,rest...Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,restricted by the inherent capacitive storage mechanism,the carbon cathodes possess a much lower specific capacity than battery-type anodes.Therefore,designing high-performance carbon cathodes is extremely urgent for the development of PIHCs.Herein,N,O codoped porous carbon(NOPC)was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique,displaying the characteristics of abundant N/O content(4.7 at%/16.9 at%),ultrahigh specific surface area(3092 m^(2)g^(-1))and hierarchical pore network.The designed NOPC cathode delivers a high specific capacity(164.4 mAh.g^(-1)at 0.05 A.g^(-1))and superior cyclability(95.1%retention ratio at 2 A·g^(-1)over 2500 cycles).Notably,the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal bal-ance between capacity and rate capability.Moreover,the pseudocapacitance can be further augmented through the incorporation of N/O functional groups.As expected,the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg-at 747 W·kg^(-1)and excellent capacity retention of 84.4% fter 400 cycles at 1.0 A·g^(-1).This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs.展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such...LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.展开更多
The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 ...The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.展开更多
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the s...Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.展开更多
By using correlation-detection technique and improving structure of the test tube,the background noise of thermionic-electrons and space charge effect are restrained.The sec-ondary emission coefficient δ of thermioni...By using correlation-detection technique and improving structure of the test tube,the background noise of thermionic-electrons and space charge effect are restrained.The sec-ondary emission coefficient δ of thermionic cathode at high temperature has been studied.Theδ of impregnated scandate cathodes increases exponentially with increasing temperature at lowenergy and current of the bombardment electrons;at high energy or current of the bombardmentelectrons the temperature has little effect on δ.The research shows that an enhanced thermionicemission occurred when the cathode works at high temperature and under electron bombardment.These phenomena are discussed in terms of “internal field model”.展开更多
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur...The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.展开更多
A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge ca...A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge capacities of 202.6 mA.h/g and 190.5 mA.h/g at 0.2C and 1C rate, respectively, in operating voltage range of 3.0-4.3 V (versus Li^+/Li). The capacity retentions are 96.1% and 93.4% at 0.2C and 1C, respectively, after 50 cycles. Moreover, the cycle performance of the sample was investigated in a 053048-type square Li ion battery. This type of battery can keep 81.7% of initial capacity after 500 charge-discharge cycles at 1C rate, which is close to that of commercial LiCoO2 battery. Therefore, the as-prepared material is capable of such high energy applications as portable product power.展开更多
Monocrystal LiMn_(0. 6)Fe_(0. 4)PO_4 cathode material was obtained via hydrothermal method at 180℃ for 10 h without any surfactant. The effects of hydrothermal time on the phase and morphology of the material were di...Monocrystal LiMn_(0. 6)Fe_(0. 4)PO_4 cathode material was obtained via hydrothermal method at 180℃ for 10 h without any surfactant. The effects of hydrothermal time on the phase and morphology of the material were discussed.By controlling the reaction solutions, the rodlike, flowerlike,and strawlike LiMn_(0.6)Fe_(0.4)PO_4 cathode materials were synthesized. Electrochemical performances show that the rodlike LiMn_(0. 6)Fe_(0. 4)PO_4 has the best electrochemical properties. The initial discharge capacity of the rodlike structure is 106.4 mAh·g^(-1), which is higher than those of flowerlike and strawlike materials.展开更多
Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indica...Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.展开更多
LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(...LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.展开更多
Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (...Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.展开更多
Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measuremen...Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.展开更多
基金supported by the research project within the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,Action 21)Kun Zheng acknowledges financial support from AGH University of Krakow(No.16.16.210.476).
文摘Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).
基金financially supported by the National Natural Science Foundation of China (No. 62464010)the Spring City Plan-Special Program for Young Talents (K202005007)+3 种基金the Yunnan Talents Support Plan for Young Talents (XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects (202101BA070001-138)Key Laboratory of Artificial Microstructures in Yunnan Higher EducationFrontier Research Team of Kunming University 2023
文摘Zinc-ion batteries(ZIBs)have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity.However,ZIBs face several challenges,such as cathode capacity degradation and short cycle life.Ordinary metal–organic frameworks(MOFs)are characterized by high specific surface areas,large pore channels,and controllable structures and functions,making them suitable for use in ZIB cathodes with good performance.However,the insulating properties of MOFs hinder their further development.In contrast,electronic conductive MOFs(EC-MOFs)show high electronic conductivity,which facilitates rapid electron transport and ameliorates the charging and discharging efficiency of ZIBs.This paper introduces the unique conduction mechanism of EC-MOFs and elaborates various strategies for constructing EC-MOFs with high conductivity and stability.Additionally,the synthesis methods of EC-MOF-based cathode materials and their properties in ZIBs are elucidated.Finally,this paper presents a summary and outlook on the advancements of EC-MOFs for ZIB cathodes.This review provides guidance for designing and applying EC-MOFs in ZIBs and other energy storage devices.
基金supported by the National Natural Science Foundation of China(No.52072217)the National Key Research and Development Program of China(No.2022YFB3807700)+2 种基金the Joint Funds of the Hubei Natural Science Foundation Innovation and Development(No.2022CFD034)Hubei Natural Science Foundation Innovation Group Project(No.2022CFA020)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164).
文摘With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.
基金Maoming Science and Technology Special Fund Project(Project No.2019018003).Characteristic Innovation Project of Universities in Guangdong Province(Project No.2018KTSCX147).Science and Technology Program of Maoming City(Project No.2020527).
文摘The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
基金financially supported by the National Natural Science Foundation of China(Nos.22179123 and52002138)Taishan Scholar Program of Shandong Province+1 种基金China(No.tsqn202211048)the Fundamental Research Funds for the Central Universities(Nos.202262010 and 862201013190)。
文摘Potassium-ion hybrid capacitors(PIHCs)are widely regarded as highly promising energy storage devices,due to their exceptional energy density,impressive power density,and abundant potassium resources.Unfortunately,restricted by the inherent capacitive storage mechanism,the carbon cathodes possess a much lower specific capacity than battery-type anodes.Therefore,designing high-performance carbon cathodes is extremely urgent for the development of PIHCs.Herein,N,O codoped porous carbon(NOPC)was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique,displaying the characteristics of abundant N/O content(4.7 at%/16.9 at%),ultrahigh specific surface area(3092 m^(2)g^(-1))and hierarchical pore network.The designed NOPC cathode delivers a high specific capacity(164.4 mAh.g^(-1)at 0.05 A.g^(-1))and superior cyclability(95.1%retention ratio at 2 A·g^(-1)over 2500 cycles).Notably,the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal bal-ance between capacity and rate capability.Moreover,the pseudocapacitance can be further augmented through the incorporation of N/O functional groups.As expected,the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg-at 747 W·kg^(-1)and excellent capacity retention of 84.4% fter 400 cycles at 1.0 A·g^(-1).This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs.
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
基金support given under the "Brain Pool Program of the Korean Federation of Science and Technology Societies" (KOFST), Republic of South Koreasupported by the Human Resources Development Program (No. 20124010203270) of the Korea Institute of Energy Technology EvaluationPlanning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy
文摘LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.
基金Project(GuiJiaoRen[2007]71)supported by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning,China
文摘The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.
基金This research was supportedby a grant under‘Development of Key Materials and Fundamental Tech-nology for Secondary Battery’Program of the Ministry of Commerce,Industry and Energy,Korea.
文摘Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.
文摘By using correlation-detection technique and improving structure of the test tube,the background noise of thermionic-electrons and space charge effect are restrained.The sec-ondary emission coefficient δ of thermionic cathode at high temperature has been studied.Theδ of impregnated scandate cathodes increases exponentially with increasing temperature at lowenergy and current of the bombardment electrons;at high energy or current of the bombardmentelectrons the temperature has little effect on δ.The research shows that an enhanced thermionicemission occurred when the cathode works at high temperature and under electron bombardment.These phenomena are discussed in terms of “internal field model”.
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
基金Project(2007BAQ01055)supported by the National Key Technology R&D Program of ChinaProject(2011SCU11081)supported by the Sichuan University Funds for Young Scientists,ChinaProject(20120181120103)supported by Ph.D.Programs Foundation of the Ministry of Education of China
文摘The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.
基金Project(2010DFA72760)supported by US.China Collaboration on Cutting-edge Technology Development of Electric VehiclesProjects(50901009,51271029)supported by the National Natural Science Foundation of ChinaProject(12QNJJ013)supported by the Fundamental Research Funds for the Central Universities,China
文摘A Co-Mg co-substituted LiNi0.87Co0.10Mg0.03O2 cathode material was prepared by a co-precipitation method. The prepared LiNi0.87Co0.10Mg0.03O2 exhibits excellent electrochemical properties, such as initial discharge capacities of 202.6 mA.h/g and 190.5 mA.h/g at 0.2C and 1C rate, respectively, in operating voltage range of 3.0-4.3 V (versus Li^+/Li). The capacity retentions are 96.1% and 93.4% at 0.2C and 1C, respectively, after 50 cycles. Moreover, the cycle performance of the sample was investigated in a 053048-type square Li ion battery. This type of battery can keep 81.7% of initial capacity after 500 charge-discharge cycles at 1C rate, which is close to that of commercial LiCoO2 battery. Therefore, the as-prepared material is capable of such high energy applications as portable product power.
基金financially supported by the National Natural Science Foundation of China (Nos. 21231005 and 51071087)the Major State Basic Research Development Program of China(Nos. 2011CB935900 and 2010CB631303)+2 种基金the Discipline Innovative Engineering Plan (B12015)the Research Fund for the Doctoral Program of Higher Education of China (No.20120031110001)the Tianjin Science & Technology Project (No. 10SYSYJC27600)
文摘Monocrystal LiMn_(0. 6)Fe_(0. 4)PO_4 cathode material was obtained via hydrothermal method at 180℃ for 10 h without any surfactant. The effects of hydrothermal time on the phase and morphology of the material were discussed.By controlling the reaction solutions, the rodlike, flowerlike,and strawlike LiMn_(0.6)Fe_(0.4)PO_4 cathode materials were synthesized. Electrochemical performances show that the rodlike LiMn_(0. 6)Fe_(0. 4)PO_4 has the best electrochemical properties. The initial discharge capacity of the rodlike structure is 106.4 mAh·g^(-1), which is higher than those of flowerlike and strawlike materials.
基金supported by 973(2011CB935900,2010CB631303)NSFC(21231005,51071087)+4 种基金111 Project(B12015)MOE(IRT13R30)the Research Fund for the Doctoral Program of Higher Education of China(20120031110001)Tianjin Sci&Tech Project(10SYSYJC27600)the Nature Science Foundation of Tianjin(11JCYBJC07700)
文摘Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.
基金financially supported by the National High-Tech Research and Development(863) Program of China(No.2006AA11A160)the National Natural Science Foundation of China(No.50604018)
文摘LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.
文摘Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.
基金supported by Guangxi Natural Science Foundation (0832259)Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (GuiJiaoRen [2007]71)Research Funds of the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment
文摘Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.