The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes...The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.展开更多
Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a m...Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.展开更多
Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exa...Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exacerbated by the gradually accumulated basicity of the surface with the Ni content increasing.Herein,the acidic Li_(3)PO_(4)coating layer on NCM811 particles is introduced by ball-milling approach to neutralize the basicity and aggrandize the interfacial stability.The tailored surface structure and components of NCM811 not only suppress the direct contact of cathode particles with sulfide solid-state electrolyte,but also facilitate electrochemical dynamics by driving the Li+migration across the interface and promoting the electron exchange.Thus,cells with Li_(3)PO_(4)coating layer yield 101.3 mAh g^(-1)specific capacity at 2.0 C and highly reversed discharging capacity after suffering from harsh work conditions.Additionally,the stable coating layer broadens the electrochemical windows of cells,delivering long cycle stability(>100 cycles 0.5 C).This contribution highlights the importance of basicity regulation of Ni-rich layered oxide cathode and offers a low-cost and effective approach to design the interfacial structures for the development of all solid-state batteries.展开更多
Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials...Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials for high-specific-energy lithium metal batteries(LMBs)[1].However,LRMOs face a series of serious problems such as irreversible lattice oxygen loss,transition metal(TM)migration,phase transfer,and interfacial side reactions at high voltages,resulting in rapid decay of capacity and voltage[2,3].In situ generating well-functional CEI through electrolyte engineering can effectively address these challenges[4].展开更多
Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials ...Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.展开更多
High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based ...High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability.展开更多
Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through s...Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through synergistic anionic and cationic redox reactions.However,these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading.To address these issues,strategies such as surface modification and bulk phase engineering have been explored.In this study,we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics.Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure,thereby enhancing the structural stability.Concurrently,Li^(+)/H^(+)exchange at the surface forms a robust rock-salt/spinel passivation layer,effectively suppressing oxygen evolution and mitigating interfacial side reactions.This dual modification strategy demonstrates a synergistic stabilization effect.The enhanced oxygen redox activity coexists with the improved structural integrity,leading to superior electrochemical performance.The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12%capacity retention after 200 cycles at 1 C.This study presents a straightforward and economical strategy for concurrent surface–bulk modification,offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.展开更多
Li-rich Mn-based oxides(LRMO)are of great significance in achieving high energy density all-solid-state lithium batteries(ASSLBs),owing to their high theoretical capacity and high operation voltage.Unfortunately,their...Li-rich Mn-based oxides(LRMO)are of great significance in achieving high energy density all-solid-state lithium batteries(ASSLBs),owing to their high theoretical capacity and high operation voltage.Unfortunately,their practical application is hindered by severe interface degradation due to the chemical oxidation and electrochemical decomposition of solid electrolytes(SEs),driven by high-active oxygen and electron sources from LRMO.Herein,an interfacial modification strategy is proposed to stabilize the surface lattice oxygen of LRMO and reduce electronic conduction between LRMO and SEs,synergistically.Accordingly,the byproducts from chemical oxidation(InO^(-))and electrochemical decomposition(LiCl^(-))are largely suppressed,leading to superior interfacial transport with the lowest resistance.Consequently,the ASSLB achieves a high reversible capacity of 227.9 mA h g^(-1)at 0.1 C,a cycling stability of 90.1%capacity retention after 200 cycles at 0.1 C,and a superior rate capability with a capacity of81.7 m A h g^(-1)at 3.0 C.This study enriches the fundamental understanding of LRMO/SEs interfacial evolution during the electrochemical cycling and the proposed interfacial modification strategy benefits the future design of Li-rich compounds for ASSLBs.展开更多
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f...Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.展开更多
Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy t...Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a...Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.展开更多
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well...In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.展开更多
Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium me...Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
基金the support from the National Natural Science Foun-dation of China(Grant No.U21A20311)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University,Riyadh,Saudi Arabia.
文摘The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00446825)by the Technology Innovation Program(RS-2024-00418815)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.
基金supported by the National Natural Science Foundation of China(22379121)the Shenzhen Foundation Research Fund(JCYJ20210324104412034)+1 种基金the Fundamental Research Funds for the Central Universities(G2024KY05103)the“Scientists+Engineers”Team in Qinchuangyuan of Shaanxi Province(2024QCY-KXJ-023)。
文摘Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exacerbated by the gradually accumulated basicity of the surface with the Ni content increasing.Herein,the acidic Li_(3)PO_(4)coating layer on NCM811 particles is introduced by ball-milling approach to neutralize the basicity and aggrandize the interfacial stability.The tailored surface structure and components of NCM811 not only suppress the direct contact of cathode particles with sulfide solid-state electrolyte,but also facilitate electrochemical dynamics by driving the Li+migration across the interface and promoting the electron exchange.Thus,cells with Li_(3)PO_(4)coating layer yield 101.3 mAh g^(-1)specific capacity at 2.0 C and highly reversed discharging capacity after suffering from harsh work conditions.Additionally,the stable coating layer broadens the electrochemical windows of cells,delivering long cycle stability(>100 cycles 0.5 C).This contribution highlights the importance of basicity regulation of Ni-rich layered oxide cathode and offers a low-cost and effective approach to design the interfacial structures for the development of all solid-state batteries.
文摘Lithium-rich manganese-based oxides(LRMOs;xLi_(2)MnO_(3)(1−x)LiMO_(2);M=transition metal,0<x<1)with excellent specific capacity(>300 mAh/g)and high operating voltage(≥4.8V)are the preferred cathode materials for high-specific-energy lithium metal batteries(LMBs)[1].However,LRMOs face a series of serious problems such as irreversible lattice oxygen loss,transition metal(TM)migration,phase transfer,and interfacial side reactions at high voltages,resulting in rapid decay of capacity and voltage[2,3].In situ generating well-functional CEI through electrolyte engineering can effectively address these challenges[4].
基金National Natural Science Foundation of China(22322903,52072061)Natural Science Foundation of Sichuan,China(2023NSFSC1914)Beijing National Laboratory for Condensed Matter Physics(2023BNLCMPKF015)。
文摘Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.
基金the financial support received from the National Natural Science Foundation of China(22378426,22138013)the Natural Science Foundation of Shandong Province(ZR2022MB088)the Taishan Scholar Project(ts201712020)。
文摘High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB2502200)the National Natural Science Foundation of China(Grant Nos.52325207,22239003,and 22393904).
文摘Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through synergistic anionic and cationic redox reactions.However,these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading.To address these issues,strategies such as surface modification and bulk phase engineering have been explored.In this study,we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics.Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure,thereby enhancing the structural stability.Concurrently,Li^(+)/H^(+)exchange at the surface forms a robust rock-salt/spinel passivation layer,effectively suppressing oxygen evolution and mitigating interfacial side reactions.This dual modification strategy demonstrates a synergistic stabilization effect.The enhanced oxygen redox activity coexists with the improved structural integrity,leading to superior electrochemical performance.The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12%capacity retention after 200 cycles at 1 C.This study presents a straightforward and economical strategy for concurrent surface–bulk modification,offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.
基金supported by the National Natural Science Foundation of China with Grant No.12274176 and No.12474210supported by the relevant national program+1 种基金support from Department of Science and Technology of Jilin Province with Grant No.20210301021GXthe Fundamental Research Funds for the Center Universities with Grant No.2023-JCXK-03。
文摘Li-rich Mn-based oxides(LRMO)are of great significance in achieving high energy density all-solid-state lithium batteries(ASSLBs),owing to their high theoretical capacity and high operation voltage.Unfortunately,their practical application is hindered by severe interface degradation due to the chemical oxidation and electrochemical decomposition of solid electrolytes(SEs),driven by high-active oxygen and electron sources from LRMO.Herein,an interfacial modification strategy is proposed to stabilize the surface lattice oxygen of LRMO and reduce electronic conduction between LRMO and SEs,synergistically.Accordingly,the byproducts from chemical oxidation(InO^(-))and electrochemical decomposition(LiCl^(-))are largely suppressed,leading to superior interfacial transport with the lowest resistance.Consequently,the ASSLB achieves a high reversible capacity of 227.9 mA h g^(-1)at 0.1 C,a cycling stability of 90.1%capacity retention after 200 cycles at 0.1 C,and a superior rate capability with a capacity of81.7 m A h g^(-1)at 3.0 C.This study enriches the fundamental understanding of LRMO/SEs interfacial evolution during the electrochemical cycling and the proposed interfacial modification strategy benefits the future design of Li-rich compounds for ASSLBs.
基金supported by the National Key Research and Development Program of China(2021YFF0500600)National Natural Science Foundation of China(Nos.U2001220,52203298 and 523B2022)+2 种基金National Science Fund for Distinguished Young Scholars(No.52325206)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008 and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(No.SZPR2023006).
文摘Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.
基金supported by National Natural Science Foundation of China(No.22278308 and 22109114)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant number:JDSX2022023).
文摘Hard carbon(HC)is widely used in sodium-ion batteries(SIBs),but its performance has always been limited by lowinitial Coulombic efficiency(ICE)and cycling stability.Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed byHCanode.Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption.Here,we propose 1,2-dihydroxybenzene Na salt(NaDB)as a cathode compensation agent with high specific capacity(347.9 mAh g^(-1)),lower desodiation potential(2.4–2.8 V)and high utilization(99%).Meanwhile,its byproduct could functionalize HC with more C=O groups and promote its reversible capacity.Consequently,the presodiation hard carbon(pHC)anode exhibits highly reversible capacity of 204.7 mAh g^(-1) with 98%retention at 5 C rate over 1000 cycles.Moreover,with 5 wt%NaDB initially coated on the Na3V2(PO4)3(NVP)cathode,the capacity retention of NVP + NaDB|HC cell could increase from 22%to 89%after 1000 cycles at 1 C rate.This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金supported by the National Natural Science Foundation of China(Grant No.W2412060,22325902 and 52171215)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2023002)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.
基金the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)for supporting our work。
文摘In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.
基金supported by the National Natural Science Foundation of China(52372249)support by the Program of Shanghai Academic Research Leader(21XD1424400)。
文摘Vanadium pentoxide(V_(2)O_(5))displays the characteristics of high theoretical specific capacity,high operating voltage,and adjustable layered structure,possessing the considerable potential as cathode in magnesium metal batteries(MMBs).Nevertheless,the large charge-radius ratio of Mg^(2+)induces the strong interactions of Mg^(2+)with solvent molecules of electrolyte and anionic framework of cathode,resulting in a notable voltage polarization and structural deterioration during cycling process.Herein,an in-situ multi-scale structural engineering is proposed to activate the interlayer-expanded V_(2)O_(5)cathode(pillared by tetrabutylammonium cation)via adding hexadecyltrimethylammonium bromide(CTAB)additive into electrolyte.During cycling,the in-situ incorporation of CTA^(+)not only enhances the electrostatic shielding effect and Mg species migration,but also stabilizes the interlayer spacing.Besides,CTA^(+)is prone to be adsorbed on cathode surface and induces the loss-free pulverization and amorphization of electroactive grains,leading to the pronounced effect of intercalation pseudocapacitance.CTAB additive also enables to scissor the Mg^(2+)solvation sheath and tailor the insertion mode of Mg species,further endowing V_(2)O_(5)cathode with fast reaction kinetics.Based on these merits,the corresponding V2O5‖Mg full cells exhibit the remarkable rate performance with capacities as high as 317.6,274.4,201.1,and 132.7 mAh g^(-1)at the high current densities of 0.1,0.2,0.5,and 1 A g^(-1),respectively.Moreover,after 1000 cycles,the capacity is still preserved to be 90,4 mAh g^(-1)at 1 A g^(-1)with an average coulombic efficiency of~100%.Our strategy of synergetic modulations of cathode host and electrolyte solvation structures provides new guidance for the development of high-rate,large-capacity,and long-life MMBs.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).