DNA methylation plays important roles in regulating gene expression during development.However,little is known about the influence of DNA methylation on secondary metabolism during leaf development in the tea plant(Ca...DNA methylation plays important roles in regulating gene expression during development.However,little is known about the influence of DNA methylation on secondary metabolism during leaf development in the tea plant(Camellia sinensis).In this study,we combined the methylome,transcriptome,and metabolome to investigate the dynamic changes in DNA methylation and its potential regulatory roles in secondary metabolite biosynthesis.In this study,the level of genomic DNA methylation increased as leaf development progressed from tender to old leaf.It additionally exhibited a similar distribution across the genomic background at the two distinct developmental stages studied.Notably,integrated analysis of transcriptomic and methylomic data showed that DNA hypermethylation primarily occurred in genes of the phenylpropanoid,flavonoid,and terpenoid biosynthesis pathways.The effect of methylation on transcription of these secondary metabolite biosynthesis genes was dependent on the location of methylation(i.e.,in the promoter,gene or intergenic regions)and the sequence context(i.e.,CpG,CHG,or CHH).Changes in the content of catechins and terpenoids were consistent with the changes in gene transcription and the methylation state of structural genes,such as serine carboxypeptidase-like acyltransferases 1A(SCPL1A),leucoanthocyanidin reductase(LAR),and nerolidol synthase(NES).Our study provides valuable information for dissecting the effects of DNA methylation on regulation of genes involved in secondary metabolism during tea leaf development.展开更多
This study provides different opinion for exploring the mechanism of catechin(CAT)relieving nonalcoholic steatohepatitis(NASH),it is more innovative to explore from the perspective of intestinal microorganism.Through ...This study provides different opinion for exploring the mechanism of catechin(CAT)relieving nonalcoholic steatohepatitis(NASH),it is more innovative to explore from the perspective of intestinal microorganism.Through in vitro fermentation experiments,CAT could improve the abundance of Enterococcus,and Enterococcus faecalis(EF)accounts for the vast majority of Enterococcus in human gut.The experimental results in vivo showed that EF group and CAT+EF group could reduce the body weight,liver index and epididymal fat index of NASH mice,and improve the changes of serum and liver indexes.Hematoxylin-eosin staining observation showed that these two groups have greatly improved the fatty degeneration,balloon degeneration and necrotic focus caused by NASH.The alleviation of CAT+EF group was more obvious.Results of targeted metabonomics showed that CAT could promote EF to produce more methyl palmitate(C_(16:0)),which plays a great role in relieving NASH.Our results indicated that EF could alleviate NASH and CAT+EF group had better alleviation may due to more production of methyl palmitate(C_(16:0))by EF.This study provides a new idea for CAT to alleviate NASH.展开更多
Objective:To discuss the effect of catechins on myocardial injury and inflammatory factors in rats with coronary heart disease under PI3K/Akt/eNOS signaling pathway.Methods:A total of 50 healthy adult pathogen-free(SP...Objective:To discuss the effect of catechins on myocardial injury and inflammatory factors in rats with coronary heart disease under PI3K/Akt/eNOS signaling pathway.Methods:A total of 50 healthy adult pathogen-free(SPF)-grade SD rats were divided into five groups by random number table method.Except for the blank group,the other four groups were fed with high fat to construct a rat model of coronary artery disease.After the model was successfully constructed,the blank group and the model group were given saline by gavage,the positive group was given 25 mg/kg aspirin by gavage,the low-dose group was given 20 mg/kg catechin by gavage,and the high-dose group was given 60 mg/kg catechin by gavage.The expression levels of PI3K/Akt/eNOS signaling pathway-related proteins,myocardial injury markers,myocardial infarction and myocardial inflammatory factors were observed and compared in the five groups.Results:Overall,there were significant differences in the expression levels of PI3K,p-Akt/Akt,and p-eNOS/eNOS in the five groups of rats(P<0.05);there were significant differences in the expression levels of CK-MB and c Tn I in the five groups of rats(P<0.05);there were significant differences in ischemic area,infarct area,and myocardial infarction range in the four groups of rats,except for the blank group(P<0.05);there were significant differences in the expression levels of IL-1β,IL-18,TNF-α,and ET-1 in the five groups of rats(P<0.05).Conclusion:Catechins can reduce the severity of myocardial injury,reduce the range of myocardial infarction,and reduce myocardial inflammation in rats with coronary heart disease by up-regulating expression level of PI3K/Akt/eNOS signaling pathway-related proteins.Compared with aspirin,high-dose catechins have a more prominent protective effect on the myocardium of rats with coronary heart disease.展开更多
[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the content...[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the contents of gallic acid (GA), catechins (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) of 121 tea germplasms from the China National Germplasm Tea Repositories (CNGTR) at the Tea Research Institute of Yunnan Academy of Agricultural Sciences (TRIYAAS) were measured. [Result] The content of GA ranged from 0.210% to 1.902%, with an average of 0.834%, explaining rela- tively low GA content among tea germplasms. The content of C ranged from 0.069% to 8.865%, with an average of 1.916%. The content of EC ranged from 0.126% to 2.865%, with an average of 1.112%. The content of EGC ranged from 0.00% to 3.709%, with an average of 0.954%. The content of ECG ranged from 0.739% to 8.957%, with an average of 4.063%. The content of EGCG ranged from 0.819% to 11.77%, with an average of 5.939%. The content of total C ranged from 6.354% to 22.654%, with an average of 14.042%. [Conclusion] There was relatively big difference of catechin contents among different tea resources, indicating that there was plentiful biodiversity of Yunnan tea germplasms. At the same time, three tea germplasms with high epigallocatechin gallate content (≥10%) was selected preliminarily, which would provide important materials for breeding tea cultivars with high EGCG content in the future.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2022A1515111141 and 2023A1515010786)。
文摘DNA methylation plays important roles in regulating gene expression during development.However,little is known about the influence of DNA methylation on secondary metabolism during leaf development in the tea plant(Camellia sinensis).In this study,we combined the methylome,transcriptome,and metabolome to investigate the dynamic changes in DNA methylation and its potential regulatory roles in secondary metabolite biosynthesis.In this study,the level of genomic DNA methylation increased as leaf development progressed from tender to old leaf.It additionally exhibited a similar distribution across the genomic background at the two distinct developmental stages studied.Notably,integrated analysis of transcriptomic and methylomic data showed that DNA hypermethylation primarily occurred in genes of the phenylpropanoid,flavonoid,and terpenoid biosynthesis pathways.The effect of methylation on transcription of these secondary metabolite biosynthesis genes was dependent on the location of methylation(i.e.,in the promoter,gene or intergenic regions)and the sequence context(i.e.,CpG,CHG,or CHH).Changes in the content of catechins and terpenoids were consistent with the changes in gene transcription and the methylation state of structural genes,such as serine carboxypeptidase-like acyltransferases 1A(SCPL1A),leucoanthocyanidin reductase(LAR),and nerolidol synthase(NES).Our study provides valuable information for dissecting the effects of DNA methylation on regulation of genes involved in secondary metabolism during tea leaf development.
基金supported by the National Natural Science Foundation of China(32202200)Shanghai Excellent Academic/Technical Leaders Project(23XD1430500).
文摘This study provides different opinion for exploring the mechanism of catechin(CAT)relieving nonalcoholic steatohepatitis(NASH),it is more innovative to explore from the perspective of intestinal microorganism.Through in vitro fermentation experiments,CAT could improve the abundance of Enterococcus,and Enterococcus faecalis(EF)accounts for the vast majority of Enterococcus in human gut.The experimental results in vivo showed that EF group and CAT+EF group could reduce the body weight,liver index and epididymal fat index of NASH mice,and improve the changes of serum and liver indexes.Hematoxylin-eosin staining observation showed that these two groups have greatly improved the fatty degeneration,balloon degeneration and necrotic focus caused by NASH.The alleviation of CAT+EF group was more obvious.Results of targeted metabonomics showed that CAT could promote EF to produce more methyl palmitate(C_(16:0)),which plays a great role in relieving NASH.Our results indicated that EF could alleviate NASH and CAT+EF group had better alleviation may due to more production of methyl palmitate(C_(16:0))by EF.This study provides a new idea for CAT to alleviate NASH.
文摘Objective:To discuss the effect of catechins on myocardial injury and inflammatory factors in rats with coronary heart disease under PI3K/Akt/eNOS signaling pathway.Methods:A total of 50 healthy adult pathogen-free(SPF)-grade SD rats were divided into five groups by random number table method.Except for the blank group,the other four groups were fed with high fat to construct a rat model of coronary artery disease.After the model was successfully constructed,the blank group and the model group were given saline by gavage,the positive group was given 25 mg/kg aspirin by gavage,the low-dose group was given 20 mg/kg catechin by gavage,and the high-dose group was given 60 mg/kg catechin by gavage.The expression levels of PI3K/Akt/eNOS signaling pathway-related proteins,myocardial injury markers,myocardial infarction and myocardial inflammatory factors were observed and compared in the five groups.Results:Overall,there were significant differences in the expression levels of PI3K,p-Akt/Akt,and p-eNOS/eNOS in the five groups of rats(P<0.05);there were significant differences in the expression levels of CK-MB and c Tn I in the five groups of rats(P<0.05);there were significant differences in ischemic area,infarct area,and myocardial infarction range in the four groups of rats,except for the blank group(P<0.05);there were significant differences in the expression levels of IL-1β,IL-18,TNF-α,and ET-1 in the five groups of rats(P<0.05).Conclusion:Catechins can reduce the severity of myocardial injury,reduce the range of myocardial infarction,and reduce myocardial inflammation in rats with coronary heart disease by up-regulating expression level of PI3K/Akt/eNOS signaling pathway-related proteins.Compared with aspirin,high-dose catechins have a more prominent protective effect on the myocardium of rats with coronary heart disease.
基金Supported by National Natural Science Foundation of China(31160175)Technology Innovation Talents Project of Yunnan Province(2011CI068)+1 种基金Special Fund for National Modern Agricultural Industrial Technology System Construction(nycytx-23)Seed Preservation Project of Ministry of Agriculture(NB2012-2130135)~~
文摘[Objective] This study aimed to analyze the difference in the contents of gallic acid and catechins of tea resources from Yunnan Province. [Method] By using high performance liquid chromatography (HPLC), the contents of gallic acid (GA), catechins (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) of 121 tea germplasms from the China National Germplasm Tea Repositories (CNGTR) at the Tea Research Institute of Yunnan Academy of Agricultural Sciences (TRIYAAS) were measured. [Result] The content of GA ranged from 0.210% to 1.902%, with an average of 0.834%, explaining rela- tively low GA content among tea germplasms. The content of C ranged from 0.069% to 8.865%, with an average of 1.916%. The content of EC ranged from 0.126% to 2.865%, with an average of 1.112%. The content of EGC ranged from 0.00% to 3.709%, with an average of 0.954%. The content of ECG ranged from 0.739% to 8.957%, with an average of 4.063%. The content of EGCG ranged from 0.819% to 11.77%, with an average of 5.939%. The content of total C ranged from 6.354% to 22.654%, with an average of 14.042%. [Conclusion] There was relatively big difference of catechin contents among different tea resources, indicating that there was plentiful biodiversity of Yunnan tea germplasms. At the same time, three tea germplasms with high epigallocatechin gallate content (≥10%) was selected preliminarily, which would provide important materials for breeding tea cultivars with high EGCG content in the future.