期刊文献+
共找到1,963篇文章
< 1 2 99 >
每页显示 20 50 100
Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts:A review
1
作者 Honghong Zhang Zhiwei Wang +3 位作者 Hongxia Lin Yuxi Liu Hongxing Dai Jiguang Deng 《Journal of Environmental Sciences》 2025年第9期858-888,共31页
Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is... Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs.Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity.To further lower the cost of catalysts,single atom catalysts(SAC)have been fabricated and extensively studied for application in VOCs oxidation due to their 100%atom-utilization efficiency and unique catalytic performance.In this review,we comprehensively summarize the recent advances in supported noble metal(e.g.,Pt,Pd,Au,and Ag)catalysts and SAC for VOCs oxidation since 2015.Firstly,this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts,including particle size,valence state and dispersion of noble metals,properties of the support,metal oxide/ion modification,preparation method,and pretreatment conditions of catalysts.Secondly,we briefly summarize the catalytic performance of SAC for typical VOCs.Finally,we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation. 展开更多
关键词 Volatile organic compounds catalytic oxidation Supported noble metal catalysts Single atom catalysts Pt Pd Au and Ag
原文传递
Progress in research on catalysts for catalytic oxidation of formaldehyde 被引量:40
2
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期102-122,共21页
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme... Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered. 展开更多
关键词 FORMALDEHYDE catalytic oxidation Metal oxide catalyst Noble metal catalyst Low-temperature catalytic activity
在线阅读 下载PDF
Bentonite supported cobalt catalyst prepared by blending method for the catalytic oxidation of desulfurization by-product sulfite:Catalytic performance and mechanism
3
作者 Fanbo Zeng Jing Zhu +7 位作者 Feng Liu Guoyu Zhang Weirun Li Wenye Li Zhiwei Shang Hong You Shuxiao Wang Zhipeng Li 《Journal of Environmental Sciences》 2025年第10期584-595,共12页
Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid ... Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid catalyst Co-Bent(bentonite supported cobalt)was prepared by blending method for MgSO_(3) oxidation with bentonite as the carrier and cobalt as the active component.At the calcination temperature of 550℃ and the Co loading level of 3 wt.%,the catalyst showed excellent catalytic performance for the oxidation of high concentration MgSO_(3) slurry,and the oxidation rate of MgSO_(3) was 0.13 mol/(L·h).The research indicated that the active component was uniformly distributed within porous structure of the catalyst as Co_(3)O_(4),which facilitated the oxidation of SO_(3)^(2-) catalyzed by Co_(3)O_(4).Kinetic researches indicated the oxidation rate of MgSO_(3) was influenced by the catalyst dosage,the reaction temperature,the solution pH,the airflow rate,and the SO_(3)^(2-) concentration.Additionally,after recycling experiments,the regenerated catalyst retained its high catalytic performance for the MgSO_(3) oxidation.The reaction mechanism for the catalytic oxidation of MgSO_(3) by Co-Bent catalyst was also proposed.The generation of active free radicals(OH·,SO_(4)^(-)·,SO_(3)^(-)·,SO_(5)^(-)·)accelerated the MgSO_(3) oxidation.These results provide theoretical support for the treatment of MgSO_(3) and the development of durable catalyst. 展开更多
关键词 Magnesium sulfite BENTONITE Blending method Solid catalyst catalytic oxidation Reaction mechanism
原文传递
Supported Co_(3)O_(4) catalyst on modified UiO-66 by Ce^(4+)for completely catalytic oxidation of toluene
4
作者 Yongchang Zhao Jun Cao +4 位作者 Shihong Tian Xiaoxiao Zhang Yadi Yang Zhian Gong Xiaojiang Yao 《Journal of Rare Earths》 2025年第7期1435-1445,共11页
Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by... Creating a new low-temperature catalyst in decreasing the emission of volatile organic compounds(VOCs)has great significance under different industrial production situations.In particular,the Zr-UiO-66 is optimized by different amounts of cerium,which not only enhances the physicochemical stability but also increases the number of active sites of Ce_(x)Zr_(y)UiO-66.Furthermore,the catalysts with Co_(3)O_(4)nanoparticles supported on Ce_(x)Zr_(y)UiO-66 were successfully prepared via impregnation method.In the process of toluene degradation,the Co/Ce_(1)Zr_(2)-Ui0-66 attains a 90%conversion rate at 210℃with a space velocity of 60000 mL/(g·h)and toluene concentration at 1000×10^(-6).Meanwhile,the carbon dioxide selectivity reaches 100%at 218℃.The Co/Ce_(1)Zr_(2)-UiO-66 shows great water resistance(3 vol%H_(2)O).Multiple characterization methods were used to figure out the physicochemical properties of the catalysts.It is found that the addition of an appropriate amount of cerium can enhance stability of UiO-66 and surface lattice oxygen proportion.Additionally,the stronger electron transfer between Ce^(4+)and Co^(2+)enables the Co/Ce_(1)Zr_(2)-UiO-66 to possess more active surface oxygen species and Co_(3)+cationic species in all samples. 展开更多
关键词 Bimetal center Uio-66 Selectivity of CO_(2) Non-noble metals catalyst catalytic oxidation of toluene Rare earths
原文传递
Influence of Pretreatment on the Interaction of Oxygen with Silver and the Catalytic Activity of Ag/SiO_(2) Catalysts for CO Selective Oxidation in H_(2) 被引量:1
5
作者 ZhenpingQu MojieCheng +1 位作者 ChuanShi XinheBao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第1期4-12,共9页
The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatmen... The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatment exerts a strong influence on the activity andselectivity of the silver catalyst. A drop in activity and selectivity is observed after treating apre-reduced catalyst with oxygen at low temperatures, whereas a converse result is obtained after anoxidizing treatment at high temperatures (T ≥ 350℃). O_2-TPD results show that surface oxygenspecies adsorbs on silver surface after the oxygen treatment at low temperatures. However,penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile thesurface oxygen species disappear. No other silver species except metallic silver are observed on allthe catalysts by XRD, and the size of silver particle is not changed after the treatment withoxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also beremoved by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorptionand diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing thedecrease in CO oxidation activity, in other words, it is important to obtain a clean silver surfacefor increasing the catalyst activity in CO removal from H_2-rich feed gas. The differences inactivity and selectivity due to the oxygen pretreatment at different temperatures are discussed interms of the changes in the surface/subsurface oxygen species of the silver particles. 展开更多
关键词 CO selective oxidation PRETREATMENT silver catalyst OXYGEN interaction
在线阅读 下载PDF
Catalytic Oxidation of Toluene over Nanorod Manganese Oxides Catalysts: Phase Change Effects
6
作者 Zhang Xuejun Zhang Zhuofu +5 位作者 Song Zhongxian Wu Yinghan Liu Wei Liu Zepeng Liu Chunyu Zhu Xinfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第3期67-76,共10页
Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, ... Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products. 展开更多
关键词 catalytic oxidation MnOx catalysts Lattice defects Mn^(3+)/(Mn^(3+)+Mn^(4+))
在线阅读 下载PDF
Selective catalytic oxidation of NO with O_2 over Ce-doped MnO_x/TiO_2 catalysts 被引量:27
7
作者 Xiaohai Li Shule Zhang +2 位作者 Yong Jia Xiaoxiao Liu Qin Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期17-24,共8页
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ... A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated. 展开更多
关键词 selective catalytic oxidation (SCO) of NO MnOx/TiO2 catalysts Ce-doped catalysts
在线阅读 下载PDF
A CeFeOx catalyst for catalytic oxidation of NO to NO2 被引量:4
8
作者 王文欢 李伟 +4 位作者 郭瑞堂 陈其林 王青山 潘卫国 胡国新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第9期876-881,共6页
Catalytic oxidation of NO into NO2 is a promising method for NOx emission control. The aim of this study was to de-velop an economic and environmental-friendly catalyst for NO catalytic oxidation. Herein a CeFeOx comp... Catalytic oxidation of NO into NO2 is a promising method for NOx emission control. The aim of this study was to de-velop an economic and environmental-friendly catalyst for NO catalytic oxidation. Herein a CeFeOx complex oxide catalyst for catalytic oxidation of NO was prepared by coprecipitation method. After that the catalytic performance of this catalyst was meas-ured on a fixed-bed reactor. It was found that the intrinsic activity of CeFeOx was higher than that of CeOx and FeOx. The charac-terization techniques of Brumauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR), temperature programmed desorption with NO+O2 (NO+O2-TPD) and X-ray photoelectron spectroscopy (XPS) were performed to investigate the surface area, crystal structure, redox property and NOx adsorption behavior of the catalyst samples. From the characterization results, it was concluded that the low crystallinity of CeFeOx promoted the dispersion of active species, as a result, enhancing the redox ability and NO adsorption capacity of CeFeOx catalyst, which is favorable to NO catalytic oxida-tion. Furthermore, the presence of much chemisorbed oxygen on CeFeOx catalyst also made a great contribution to its good cata-lytic performance. 展开更多
关键词 NO catalytic oxidation CeFeOx catalyst CHARACTERIZATION rare earths
原文传递
Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts 被引量:10
9
作者 Yang Zhiyuan Gong Liang Ran Pan 《International Journal of Mining Science and Technology》 2012年第1期75-78,共4页
Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal, with added catalysts. We investigated catalytic oxidation processes and the factors that affect the reactions. The effects of... Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal, with added catalysts. We investigated catalytic oxidation processes and the factors that affect the reactions. The effects of different catalysts, including NiSO4 support on active carbon (AC-NiS04), NiS04 support on sil- icon dioxide (SiO2-NiSO4), composites of SO42-1Fe203, Zr-iron and vanadium-iron composite were stud- ied. As well, we investigated nitric humic acid yields and the chemical structure of products by element analysis, FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions). The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%, 16.36% 12.94%, 5.61% and 8.59%, respectively. The highest yield of humic acid, i.e., 36.0%, was obtained with AC-NiSO4 as the catalyst. The amounts of C and H decreased with the amount of nitrogen. The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions. 展开更多
关键词 Guizhou coal catalytic oxidation Humic acid catalystS
在线阅读 下载PDF
Modulate the superficial structure of La_(2)Ce_(2)O_(7) catalyst with anchoring CuO_(x) species for the selective catalytic oxidation of NH_(3) 被引量:1
10
作者 Xiangchen Kong Zhenguo Li +6 位作者 Yuankai Shao Xiaoning Ren Kaixiang Li Hanming Wu Congjie Lv Cheng Lv Shengli Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期1-8,共8页
Air contamination caused by the ammonia slip phenomenon has gradually captured the researcher’s extensive attention.An effective strategy for controlling fugitive NH_(2)is critical to improving the air quality and li... Air contamination caused by the ammonia slip phenomenon has gradually captured the researcher’s extensive attention.An effective strategy for controlling fugitive NH_(2)is critical to improving the air quality and living environment.In the present work,CuO_(x)/La_(2)Ce_(2)O_(7)composite as a potential candidate catalyst is synthesized through the electrostatic adsorption method for the selective catalytic oxidation(SCO_(2))of NH_(2)to N.The 5%Cu Ox/La_(2)Ce_(2)O_(7)exhibits the best catalytic activity(T=243℃)and ammonia conversion efficiency.The improvement of performance is mainly attributed to the superficial connection of[Ce-O-Cu],which enhances the capturing ability of ammonia molecule and accelerates the dissociating efficiency of N–H bonding for Nevolution,simultaneously.This work provides a facile method to synthesis pyrochlore-like composite catalyst of NH_(2)-SCO_(2) for solving the problem of ammonia slip pollution in the future. 展开更多
关键词 La_(2)Ce_(2)O_(7)catalyst Selective catalytic oxidation CuO_(x)species Ammonia slip
原文传递
Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds
11
作者 Zeyu Jiang Yadi Wang +1 位作者 Changwei Chen Chi He 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期83-91,共9页
The catalytic oxidation of volatile organic compounds(VOCs)is of considerable significance for the sustainable development of the chemical industry;thus,considerable efforts have been devoted to the exploration of eff... The catalytic oxidation of volatile organic compounds(VOCs)is of considerable significance for the sustainable development of the chemical industry;thus,considerable efforts have been devoted to the exploration of efficient catalysts for use in this reaction.In this regard,the development and utilization of single-atom catalysts(SACs)in VOCs decomposition is a rapidly expanding research area.SACs can be employed as potential catalysts for oxidizing VOC molecules due to their optimal utilization efficiency,unique atomic bonding structures,and unsaturated orbits.Progress has been achieved,while the challenges surrounding precise regulation of the microstructures of SACs for improving their low-temperature efficiency,stability,and product selectivity under practical conditions are remaining.Therefore,elucidating structure-performance relationships and establishing intrinsic modulating mechanisms are urgently required for guiding researchers on how to synthesize effective and stable functional SACs proactively.Herein,recent advances in the design and synthesis of functional SACs for application in the catalytic oxidation of VOCs are summarized.The experimental and theoretical studies revealing higher efficiency,stability,and selectivity of as-prepared functional SACs are being highlighted.Accordingly,the future perspectives in terms of promising catalysts with multi-sized composite active sites and the illustration of intrinsic mechanism are proposed.The rapid intelligent screening of applicable SACs and their industrial applications are also discussed. 展开更多
关键词 Single-atom catalysts VOCs catalytic oxidation Hydrocarbon activation Oxygen species transformation Surface chemistry Intrinsic mechanism
原文传递
Advances in selective catalytic oxidation of ammonia (NH_(3)-SCO): A review of catalyst structure-activity relationship and design principles
12
作者 Zhao Li Chunxue Wang +6 位作者 Junjun Qiu Yixing Ma Chi Wang Xin Sun Kai Li Ping Ning Fei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期169-180,共12页
NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Cont... NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Controlling NH_(3) emissions caused by ammonia escaping from mobile and industrial sources can effectively reduce the NH_(3) content in ambient air. Among the various NH_(3) removal methods, the selective catalytic oxygen method (NH_(3)-SCO) is committed to oxidizing NH_(3) to environmentally harmless H_(2)O and N_(2);therefore, it is the most valuable and ideal ammonia removal method. In this review, the characteristics of loaded and core-shell catalysts in NH_(3)-SCO have been reviewed in the context of catalyst structure-activity relationships, and the H_(2)O resistance and SO2 resistance of the catalysts are discussed in the context of practical application conditions. Then the effects of the valence state of the active center, oxygen species on the catalyst surface, dispersion of the active center and acidic sites on the catalyst performance are discussed comprehensively. Finally, the shortcomings of the existing catalysts are summarized and the catalyst development is discussed based on the existing studies. 展开更多
关键词 AMMONIA Selective catalytic oxidation Active metals and supports Influence of gas composition Reaction mechanism catalyst structure-activity relationship
原文传递
Promotional catalytic activity and reaction mechanism of Ag-modified Ce_(0.6)Zr_(0.4)O_(2) catalyst for catalytic oxidation of ammonia
13
作者 Xiaolong Tang Yuanyuan Zhang +3 位作者 Yaru Lei Yuanyuan Liu Honghong Yi Fengyu Gao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期491-504,共14页
Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of ad... Ce1-xZrxO_(2) composite oxides(molar,x=0-1.0,interval of 0.2)were prepared by a cetyltrimethylammonium bromide-assisted precipitation method.The enhancement of silver-species modification and catalytic mechanism of adsorption-transformationdesorption process were investigated over the Ag-impregnated catalysts for lowtemperature selective catalytic oxidation of ammonia(NH_(3)-SCO).The optimal 5 wt.%Ag/Ce_(0.6)Zr_(0.4)O_(2) catalyst presented good NH_(3)-SCO performancewith>90% NH_(3) conversion at temperature(T)≥250°C and 89% N_(2) selectivity.Despite the irregular block shape and underdeveloped specific surface area(∼60m2/g),the naked and Ag-modified Ce_(0.6)Zr_(0.4)O_(2) solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)(mapping),N_(2) adsorptiondesorption test and X-ray diffraction(XRD).H2 temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO_(2) reducibility and synergistic Ag0/Ag+and Ce^(4+)/Ce^(3+)redox cycles.Besides,Ag+/Ag_(2)O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia.NH3-temperature programmed desorption(NH_(3)-TPD)showed more adsorption-desorption capacity to ammoniawere provided by physical,weakandmedium-strong acid sites.Diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure,during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction(i-SCR)reactions were proposed. 展开更多
关键词 Ag/Ce_(0.6)Zr_(0.4)O_(2)catalyst Synergistic interaction catalytic oxidation of ammonia NH3 dehydrogenation Internal selective catalytic reduction
原文传递
Experimental Research on Mercury Catalytic Oxidation over Ce Modified SCR Catalyst
14
作者 Yadi Qin Qiyu Weng Yuqun Zhuo 《Energy Engineering》 EI 2022年第1期35-47,共13页
In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared ... In order to improve the ability of SCR catalyst to catalyze the oxidation of gaseous elemental mercury,a series of novel Ce modified SCR(Selection Catalytic Reduction,V_(2)O_(5)-WO_(3)/TiO_(2))catalysts were prepared via two-step ultrasonic impregnation method.The performance of Ce/SCR catalysts on Hg^(0)oxidation and NO reduction as well as the catalytic mechanism on Hg^(0)oxidation was also studied.The XRD,BET measurements and XPS were used to characterize the catalysts.The results showed that the pore volume and pore size of catalyst was reduced by Ce doping,and the specific surface area decreased with the increase of Ce content in catalyst.The performance on Hg^(0)oxidation was promoted by the introduction of CeO_(2).Ce_(1)/SCR(1%Ce,wt.%)catalyst exhibited the best Hg^(0)oxidation activity of 21.2%higher than that of SCR catalyst at 350℃,of which the NO conversion efficiency was also higher at 200-400℃.Furthermore,Ce_(1)/SCR showed a better H_(2)O resistance but a slightly weaker SO_(2)resistance than SCR catalyst.The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The chemisorbed oxygen and weak absorbed oxygen on the surface of catalyst were increased by the addition of CeO_(2).The Ce_(1)/SCR possed better redox ability compared with SCR catalyst.HCl was the most effective gas responsible for the Hg^(0)oxidation,and the redox cycle(V^(4+)+Ce^(4+)←→V^(5+)+Ce^(3+))played an important role in promoting Hg^(0)oxidation. 展开更多
关键词 Mercury catalytic oxidation SCR catalyst Ce doping reaction mechanism
在线阅读 下载PDF
Catalytic Oxidation of U^4+ to U^6+ by Oxygen in the Presence of a Catalyst "Muhamedzhan-1"
15
作者 Aibassov Erkin Zhakenovich Baiguzhin Adil Alimbayevich Umirkulova Zhanar Sempekovna Serikbaeva Gulbarshyn Kuanyshkanovna 《Journal of Chemistry and Chemical Engineering》 2013年第1期81-83,共3页
Recently, much attention has been devoted to new methods of intensifying situ leaching of uranium using a variety of oxidants. Currently, there are many new types of oxidants. Therefore, the development and introducti... Recently, much attention has been devoted to new methods of intensifying situ leaching of uranium using a variety of oxidants. Currently, there are many new types of oxidants. Therefore, the development and introduction of new methods for the catalytic oxidation of U4+ to U6+ is urgent. Objective for development of new technology of catalytic oxidation of U4+ to U6+ catalyst "Muhamedzhan-1" is that will reduce the consumption of sulfuric acid, hydrogen peroxide acidification. 展开更多
关键词 catalytic oxidation URANIUM catalyst.
在线阅读 下载PDF
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
16
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
在线阅读 下载PDF
Catalytic Oxidation of Cyclohexene to Adipic Acid with a Reaction-Controlled Phase-Transfer Catalyst 被引量:13
17
作者 GUO Minglin (College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China) 《催化学报》 SCIE CAS CSCD 北大核心 2003年第7期483-484,共2页
关键词 催化氧化反应 环己烯 脂肪酸 反应控制 相转移催化剂 癸钨酸盐 十二钨磷酸盐 有机合成
在线阅读 下载PDF
Zn-Ni double metal cyanide complex: A novel effective catalyst for copolymerization of propylene oxide and carbon dioxide
18
作者 陈上 麻明友 +3 位作者 肖卓炳 刘建本 张兴宏 戚国荣 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期293-298,共6页
关键词 Zn-Ni双金属氰化物配合物 环氧丙烷 二氧化碳 共聚合 催化剂
在线阅读 下载PDF
Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction
19
作者 Feifei Sun Shunhe Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期45-51,共7页
The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+... The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2. 展开更多
关键词 AU/TIO2 Au/TiO2-SiO2 propylene propylene oxide EPoxidation catalyst stability
在线阅读 下载PDF
Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation 被引量:5
20
作者 Yan WANG Ze-hua CHEN +6 位作者 Jing HUANG Gao-jie LI Jian-liang CAO Bo ZHANG Xing-ying CHEN Huo-li ZHANG Lei JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2266-2274,共9页
The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, S... The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, SEM, TEM, N2-sorption,UV-Vis, XPS and H2-TPR measurements. The results show that the spinel cobalt oxide nanoparticles are highly fragmented on therGO support and possess uniform particle size, and the as-prepared catalysts possess high specific surface area and narrow pore sizedistribution. The catalytic properties of the as-prepared rGO-Co3O4 catalysts for CO oxidation were evaluated through acontinuous-flow fixed-bed microreactor-gas chromatograph system. The catalyst with 30% (mass fraction) reduced graphene oxideexhibits the highest activity for CO complete oxidation at 100 ℃. 展开更多
关键词 reduced graphene oxide cobalt oxide catalyst CO oxidation catalytic activity
在线阅读 下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部