期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
1
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
在线阅读 下载PDF
Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane 被引量:14
2
作者 Ji Yang Yanbing Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第2期252-260,共9页
Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supp... Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supported catalysts in catalytic methane combustion due to excellent hydrothermal stability and sulfur resistance. Recently, the emergence of nanostructured perovskite oxides(such as threedimensional ordered nanostructure, nano-array structure) with outstanding catalytic activity has further driven methane catalytic combustion research into spotlight. In this review, we summarize the recent development of nanostructured perovskite oxide catalysts for methane combustion, and shed some light on the rational design of high efficient nanostructured perovskite catalysts via lattice oxygen activation,lattice oxygen mobility and materials morphology engineering. The emergent issues needed to be addressed on perovskite catalysts were also proposed. 展开更多
关键词 Nanostructured perovskites Mesoporous and macroporous Nano-array catalysts Methane oxidation catalytic combustion
原文传递
Mo-modified Pd/Al_2O_3 catalysts for benzene catalytic combustion 被引量:6
3
作者 Zhanfeng He Zhanrong He +3 位作者 Dan Wang Qifei Bo Ting Fan Yi Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第7期1481-1487,共7页
Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray p... Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion. 展开更多
关键词 Palladium molybdenum catalyst Molybdenum oxide Benzene catalytic combustion Noble metal
原文传递
Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst 被引量:11
4
作者 Yunnen Chen Ye Wu +4 位作者 Chen Liu Lin Guo Jinxia Nie Yu Chen Tingsheng Qiu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期265-273,共9页
As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH rad... As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co3O4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia(50 mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co3O4 molar ratio 8:2, calcined at 500°C for 3 hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO2-4 and HCO-3 could inhibit the catalytic activity while CO2-3 and Br-could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. 展开更多
关键词 Ammonia Metal oxide catalyst catalytic ozonation Gaseous nitrogen Wastewater treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部