A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of init...A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight (Mn), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The IH NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, Mn, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the Mn and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.展开更多
文摘A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagne- slum thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight (Mn), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The IH NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, Mn, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the Mn and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.