期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming 被引量:2
1
作者 Tomas van Haasterecht Marten Swart +1 位作者 Krijn P.de Jong Johannes Hendrik Bitter 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期287-294,共8页
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco... The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior. 展开更多
关键词 Aqueous phase reforming Particle growth catalyst stability Ostwald ripening Leaching Nickel catalysts Particle size effect Support effect
在线阅读 下载PDF
Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction
2
作者 Feifei Sun Shunhe Zhong 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期45-51,共7页
The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+... The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Ti^n+ site on the surface of the catalyst and that the adisorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Ti^n+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2. 展开更多
关键词 AU/TIO2 Au/TiO2-SiO2 PROPYLENE propylene oxide EPOXIDATION catalyst stability
在线阅读 下载PDF
PtSnNa/SUZ-4:An efficient catalyst for propane dehydrogenation 被引量:9
3
作者 周华兰 龚静静 +4 位作者 许波连 邓生财 丁元华 俞磊 范以宁 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期529-536,共8页
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech... The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation. 展开更多
关键词 SUZ-4 zeolite PtSnNa catalyst Propane dehydrogenation catalyst stability Pt distribution
在线阅读 下载PDF
Ru catalyst with the synergistic effect of single atom coupling nanoparticle and semi-embedded structure:breaking the activity and stability bottlenecks
4
作者 Yueling Cao Haoyang Li +3 位作者 Hao Wen Ruxin Dang Yu Meng Hepeng Zhang 《Science China Chemistry》 2025年第8期3756-3769,共14页
Supported metal catalysts have important industrial applications such as energy storage/conversion,sustainable production of fuels and chemicals.However,the tendency of metal nanoparticles to grow into larger particle... Supported metal catalysts have important industrial applications such as energy storage/conversion,sustainable production of fuels and chemicals.However,the tendency of metal nanoparticles to grow into larger particles is an impediment for stable or excellent performance.Currently,there remains the formidable challenge of preparing supported metal catalysts that possess both high catalytic activity and stability.Herein,a novel supported Ru catalyst(Ru-Al_(2)O_(3)@CN-A) with a special structure where single Ru atoms and Ru nanoparticles embedded into N-doped carbon layer is successfully fabricated via a coating-impregnation-pyrolysis-etching(CIPE) strategy.Due to the synergy effect of H atoms generated at Ru single sites that migrate to the quinoline-bounded Ru nanoparticles to complete hydrogenation process,the Ru-Al_(2)O_(3)@CN-A catalyst gives a turnover frequency(TOF) of 4216 h^(-1) for the selective hydrogenation of quinoline at 120℃ and 2 MPa H_(2),which,to the best of our knowledge,is superior to most of reported noble metal-based catalysts.Furthermore,benefitting from the special structure that Ru species embedded into N-doped carbon layer,the Ru-Al_(2)O_(3)@CN-A catalyst demonstrates both high catalytic stability and thermal stability,and can be reused at least 10 cycles without activity loss,which is far more stable than commercial Ru/C catalyst with a traditional structure that Ru species dispersed on support surface.We anticipate that our approach paves the way towards the design of supported metal catalyst with both high catalytic activity and stability applied in energy storage/conversion,sustainable production of fuels and chemicals fields. 展开更多
关键词 QUINOLINE catalyst stability coating-impregnation-pyrolysis-etching strategy embedded structure
原文传递
Application of atomic layer deposition in fabricating high-efficiency electrocatalysts 被引量:14
5
作者 Huimin Yang Yao Chen Yong Qin 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期227-241,共15页
Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic re... Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic reactions, although such applications remain restricted by the high cost and poor durability of the noble metals. By precisely adjusting the catalyst composition, size, and structure, electrocatalysts with excellent performance can be obtained. Atomic layer deposition(ALD) is a technique used to produce ultrathin films and ultrafine nanoparticles at the atomic level. It possesses unique advantages for the controllable design and synthesis of electrocatalysts. Furthermore, the homogenous composition and structure of the electrocatalysts prepared by ALD favor the exploration of structure-reactivity relationships and catalytic mechanisms. In this review, the mechanism, characteristics, and advantages of ALD in fabricating nanostructures are introduced first. Subsequently, the problems associated with existing electrocatalysts and a series of recently developed ALD strategies to enhance the activity and durability of electrocatalysts are presented. For example, the deposition of ultrafine Pt nanoparticles to increase the utilization and activity of Pt, fabrication of core–shell, overcoat, nanotrap, and other novel structures to protect the noble-metal nanoparticles and enhance the catalyst stability. In addition, ALD developments in synthesizing non-noble metallic electrocatalysts are summarized and discussed. Finally, based on the current studies, an outlook for the ALD application in the design and synthesis of electrocatalysts is presented. 展开更多
关键词 Atomic layer deposition ELECTROCATALYSIS PT catalyst stability Metal-support interaction
在线阅读 下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:3
6
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 Dry reforming of methane Carbon dioxide Bimetallic catalysts Coke formation catalyst stability
在线阅读 下载PDF
Stabilization of heterogeneous hydrogenation catalysts for the aqueous-phase reactions of renewable feedstocks 被引量:2
7
作者 Xiaoyan Liu Guojun Lan +3 位作者 Zhenqing Li Lihua Qian Jian Liu Ying Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期694-709,共16页
The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-d... The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-derived oxygenated chemicals,but also an inexpensive and nontoxic solvent.The instability of solid catalysts for aqueous-phase reactions caused by metal leaching and the collapse of a catalyst support represents a significant challenge.In this work,various catalyst stabilization strategies including the nanospace and interfacial confinements that prevent sintering and leaching of metal nanoparticles as well as modification methods for increasing the support stability are summarized and systemically discussed.In addition,feasible approaches to designing stable and efficient heterogeneous catalysts for aqueous-phase reactions are proposed. 展开更多
关键词 Biomass conversion Heterogeneous catalysts Metal catalysts Aqueous-phase reactions catalyst stability
在线阅读 下载PDF
Improved Performance of W/HZSM-5 Catalysts for Dehydroaromatization of Methane
8
作者 Nor Aishah Saidina Amin Kusmiyati 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第3期148-159,共12页
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability we... The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane. 展开更多
关键词 DEHYDROAROMATIZATION METHANE W-supported ZSM-5 partial ion exchange H+ ion Li ion catalyst activity catalyst stability catalyst acidity oxygen presence improved performance
在线阅读 下载PDF
Pt-H2SO4/Zr-montmorillonite: An efficient catalyst for the polymerization of octamethylcy-clotetrasiloxane, polymethylhydrosiloxane and hexamethyldisiloxane to low-hydro silicone oil
9
作者 Yuedong Zhou Fengfu Li +2 位作者 Junwei Liu Zhi Yun Xia Gui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1771-1776,共6页
The liquid phase ring-opening of octamethylcy-clotetrasiloxane (D4) was investigated over Pt-H2SO4/Zr- montmorillonite catalyst. Montmorillonite (Mt), Zr-Mt, H2SO4/Mt, H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt were also dete... The liquid phase ring-opening of octamethylcy-clotetrasiloxane (D4) was investigated over Pt-H2SO4/Zr- montmorillonite catalyst. Montmorillonite (Mt), Zr-Mt, H2SO4/Mt, H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt were also detected for evaluation. The catalysts were characterized by X-ray fluorescence, X-ray diffraction, nitrogen adsorption-desorption, NH3-TPD and pyridine-FTIR measurements. In comparison to activate clay which is used in the industry of catalyst, Zr-Mt catalyst displayed stronger acidity and more excellent catalytic activity in the polymerization of D4, polymethylhydrosiloxane (DH) and hexamethyldisiloxane (MM) to low-hydro sili- cone oil. Relative to Zr-Mt, the acidity of H2SO4/Zr-Mt was noticeably improved and the catalyst exhibited a higher capability of ring-opening of D4 conversion and yield of low-hydro silicone oil. To enhance the stability of H2SO4/Zr-Mt catalyst, a small amount of metals (Pt) was doped. The nitrogen adsorption-desorption results indicated that pore textural parameters of the Pt-H2SO4/Zr-Mt had not changed with larger specific surface area. Compared with H2SO4/Zr-Mt, the total acidity of Pt-H2SO4-Zr/Mt catalyst retained, but the content of the Bransted acid increased and the content of the Lewis acid decreased. The Pt-H2SO4-Zr/Mt catalyst displayed higher catalyst reproducibility. After 40 h reaction of polymerization, the yield of low-hydro silicone oil decreased from 93% to 42% over H2SO4/Zr-Mt catalyst, while the yield of low-hydro silicone oil reduced from 93% to 78% over Pt-H2SO4/Zr-Mt catalyst. A sharp decrease in catalytic activity after 35 h of Pt-H2SO4/Zr-Mt catalyst was detected. Furthermore, Pt-H2SO4/Zr-Mt was completely regenerated under appropriate condition and appeared good repeatability in the D4, DH and MM to low-hydro silicone oil. 展开更多
关键词 Pt-H2SO4/Zr-montmorillonite Low-hydro silicone oil catalyst stability Regeneration
在线阅读 下载PDF
Catalytic methanation of syngas over Ni-based catalysts with different supports 被引量:3
10
作者 Yincong Liu Lingjun Zhu +5 位作者 Xiaoliu Wang Shi Yin Furong Leng Fan Zhang Haizhou Lin Shurong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期602-608,共7页
Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of t... Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of these catalysts were characterized by BET, XRD, H_2-TPD, TEM and H_2-TPR. The results showed that the catalytic activity at low temperature followed the order: Ni/Al_2O_3>Ni/ZrO_2>Ni/CeO_2. Ni/Al_2O_3 catalyst presented the best catalytic performance with the highest CH_4 selectivity of 94.5%. The characterization results indicated that the dispersion of the active component Ni was the main factor affecting the catalytic activity and the one with higher dispersion gave better performance. 展开更多
关键词 Methanation Ni dispersion Catalytic activity catalyst support stability
在线阅读 下载PDF
Effects of synthesis methods on the performance of Pt + Rh/Ce_(0.6)Zr_(0.4)O_2 three-way catalysts 被引量:3
11
作者 Zongcheng Zhan Liyun Song +3 位作者 Xiaojun Liu Jiao Jiao Jinzhou Li Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第3期683-693,共11页
The 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts were fabricated via different methods, including ultrasonic-assisted membrane reduction (UAMR) co-precipitation, UAMR separation precipitation, co-impregnation, an... The 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts were fabricated via different methods, including ultrasonic-assisted membrane reduction (UAMR) co-precipitation, UAMR separation precipitation, co-impregnation, and sequential impregnation. The catalysts were physico-chemically characterized by N2 adsorption, XRD, TEM, and Hz-TPR techniques, and evaluated for three-way catalytic activities with simulated automobile exhaust. UAMR co-precipitation- and UAMR separation precipitation- prepared catalysts exhibited a high surface area and metal dispersion, wide λ window and excellent conversion for NOx reduction under lean conditions. Both fresh and aged catalysts from UAMR- precipitation showed the high surface areas of ca. 60-67 m^2/g and 18-22 m^2/g, respectively, high metal dispersion of 41%-55%, and small active particle diameters of 2.1-2.7 nm. When these catalysts were aged, the catalysts prepared by the UAMR method exhibited a wider working window (△λ = 0.284--0.287) than impregnated ones (△λ = 0.065-0.115) as well as excellent three-way catalytic performance, and showed lower/so (169℃) and T90 (195℃) for NO reduction than the aged catalysts from impregnation processes, which were at 265 and 309℃, respectively. This implied that the UAMR-separation precipitation has important potential for industrial applications to improve catalytic performance and thermal stability. The fresh and aged 0.7 wt% Pt + 0.3 wt% Rh/Ce0.6Zr0.4O2 catalysts prepared by the UAMR-separation precipitation method exhibited better catalytic performance than the corresponding catalysts prepared by conventional impregnation routes. 展开更多
关键词 UAMRthree way catalyst Pt and Rh nanoparticles precipitation thermal stability
原文传递
Performance Comparison of Two Newly Developed Bimetallic(X-Mo/Al2O3, X=Fe or Co) Catalysts for Reverse Water Gas Shift Reaction
12
作者 Abolfazl Gharibi Kharaji Ahmad Shariati 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期51-58,共8页
The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studi... The performance of the two newly developed bimetallic catalysts based on the precursor, Mo/Al_2O_3, was compared for reverse water gas shift(RWGS) reaction. The structures of the precursor and the catalysts were studied using X-ray diffraction(XRD), Brunauer–Emmett–Teller(BET) analysis, inductively coupled plasma-atomic emission spectrometry(ICP-AES), CO chemisorption, temperature programmed reduction of hydrogen(H_2-TPR) and scanning electron microscopy(SEM) techniques. The activity of Fe-Mo and Co-Mo catalysts was compared in a fixed bed reactor at different temperatures. It is shown that the Co-Mo catalyst has higher CO_2 conversion at all temperature level. The time-on-stream(TOS) analysis of the activity of catalysts for the RWGS reaction was carried out over a continuous period of 60h for both catalysts. The Fe-Mo/Al_2O_3 catalyst exhibits good stability within a period of 60h, however, the Co-Mo/Al_2O_3 is gradually deactivated after 50h of reaction time. Existence of(Fe_2(MoO4_))_3 phase in Fe-Mo/Al_2O_3 catalyst makes this catalyst more stable for RWGS reaction. 展开更多
关键词 RWGS reaction bimetallic catalysts activity stability
在线阅读 下载PDF
Mesoporous Co@MCM-41 catalyst for stable ethane dehydrogenation
13
作者 Xiufang Wang Yufeng Li +3 位作者 Wenda Yu Yuebing Xu Bing Liu Xiaohao Liu 《Carbon Resources Conversion》 2025年第2期42-51,共10页
Catalytic dehydrogenation of low-cost C_(2)-C_(4) alkanes can be an alternative route to produce value-added olefins.To overcome the drawback of a microporous Co-based Co@MFI zeolite catalyst that is sensitive to coke... Catalytic dehydrogenation of low-cost C_(2)-C_(4) alkanes can be an alternative route to produce value-added olefins.To overcome the drawback of a microporous Co-based Co@MFI zeolite catalyst that is sensitive to coke deposition for its deactivation,herein,a mesoporous Co-incorporated MCM-41 catalyst was synthesized by hydrothermal synthesis successfully and tested for ethane dehydrogenation.Various characterizations suggested that Co species were also dispersed in an atomical level in the MCM-41 zeolite with a reduction-resistant-Co^(δ+)-O^(δ-)-structure,which,therefore,ensures its high selectivity to ethylene(~100%).Thanks to the mesoporous characteristic of the MCM-41,the as-synthesized Co@MCM-41 catalyst showed excellent stability than the widely reported microporous Co@MFI catalysts,which can be attributed to the reason that the mesoporous channels are not sensitive to coke deposition and still allow reactant and products to diffuse in and out easily,This work demonstrates the importance of the diffusion of a zeolite-based catalyst and promotes the application of Co-based catalyst for alkane dehydrogenation. 展开更多
关键词 Ethane dehydrogenation Co@MCM-41 Mesoporous zeolite Hydrothermal synthesis catalyst stability
原文传递
Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines 被引量:6
14
作者 Fenghai Guo Tiebang Zhang +1 位作者 Limin Shi Lin Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1180-1192,共13页
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c... Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles. 展开更多
关键词 Mg-based hydrogen storage alloys Cycle stability Microstructure evolution catalyst stability THERMODYNAMICS
在线阅读 下载PDF
Carbon-CeO interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions 被引量:2
15
作者 Changjin Xu Yue Zhang +3 位作者 Jing Chen Song Li Ya-Wen Zhang Gaowu Qin 《Science China Materials》 SCIE EI CSCD 2021年第1期128-136,共9页
Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during hars... Noble metals are downsized to nano-/subnanoscale to improve their catalytic activity and atom-economy.However,the stabilities in chemical state and catalytic performance of these nanocatalysts often suffer during harsh conditions.For Pt nanoparticles(NPs)supported on CeO2,activated oxygen diffused from the support over-stabilizes the active sites of Pt,degrading its performance at mild temperature.In this work,Pt nanocatalysts with unique structure of triple-junction are synthesized by selectively growing Pt NPs on the carbon-CeO2 interface.Impressively,the Pt NPs exhibit much enhanced catalytic stability and high activity for CO oxidation at mild temperature.The enhancement is attributed to electron donation from graphitized carbon and the confinement effect from the high-density nanopores of the CeO2 support.The triple-junction of Pt-C-CeO2,combining the merits of CeO2 for activating O2 and electron donating capability of carbon,provides new inspiration to the fabrication of high-performance nanocatalysts. 展开更多
关键词 catalyst stability Pt nanocatalyst interface confinement
原文传递
Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane 被引量:2
16
作者 S.Jašo S.Sadjadi +8 位作者 H.R.Godini U.Simon S.Arndt O.Görke A.Berthold H.Arellano-Garcia H.Schubert R.Schomäcker G.Wozny 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期534-543,共10页
Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially M... Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis. 展开更多
关键词 oxidative coupling of methane (OCM) fluidized-bed reactor catalyst stability
在线阅读 下载PDF
Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
17
作者 Lan Yao Hexiang Zhong +2 位作者 Chengwei Deng Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期153-157,共5页
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o... Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions. 展开更多
关键词 Oxygen evolution reaction Co3O4 Non-precious metal catalysts High activity High stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部