期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Screening of MgO- and CeO_2-Based Catalysts for Carbon Dioxide Oxidative Coupling of Methane to C_(2+) Hydrocarbons 被引量:5
1
作者 Istadi Nor Aishah Saidina Amin 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第1期23-35,共13页
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so... The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively. 展开更多
关键词 catalyst screening carbon dioxide oxidative coupling METHANE ternary metal oxide binary metal oxide MGO CEO2 C2+ hydrocarbons
在线阅读 下载PDF
Mechanism investigation and catalyst screening of high-temperature reverse water gas shift reaction 被引量:1
2
作者 Yanying Qi Yi-An Zhu De Chen 《Green Chemical Engineering》 2020年第2期131-139,共9页
Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hi... Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS. 展开更多
关键词 Reverse water gas shift Microkinetic modeling catalyst screening Scaling relationship
原文传递
Machine learning-accelerated density functional theory optimization of PtPd-based high-entropy alloys for hydrogen evolution catalysis 被引量:1
3
作者 Patcharaporn Khajondetchairit Siriwimol Somdee +5 位作者 Tinnakorn Saelee Annop Ektarawong Björn Alling Piyasan Praserthdam Meena Rittiruam Supareak Praserthdam 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2777-2785,共9页
High-entropy alloys(HEAs)have emerged as promising catalysts for the hydrogen evolution reaction(HER)due to their compositional diversity and synergistic effects.In this study,machine learning-accelerated density func... High-entropy alloys(HEAs)have emerged as promising catalysts for the hydrogen evolution reaction(HER)due to their compositional diversity and synergistic effects.In this study,machine learning-accelerated density functional theory(DFT)calculations were employed to assess the catalytic performance of PtPd-based HEAs with the formula PtPdXYZ(X,Y,Z=Fe,Co,Ni,Cu,Ru,Rh,Ag,Au;X≠Y≠Z).Among 56 screened HEA(111)surfaces,PtPdRuCoNi(111)was identified as the most promising,with adsorption energies(E_(ads))between−0.50 and−0.60 eV and high d-band center of−1.85 eV,indicating enhanced activity.This surface showed the hydrogen adsorption free energy(ΔG_(H^(*)))of−0.03 eV for hydrogen adsorption,outperforming Pt(111)by achieving a better balance between adsorption and desorption.Machine learning models,particularly extreme gradient boosting regression(XGBR),significantly reduced computational costs while maintaining high accuracy(root-mean-square error,RMSE=0.128 eV).These results demonstrate the potential of HEAs for efficient and sustainable hydrogen production. 展开更多
关键词 catalyst screening supervised regression model multi-element alloys hydrogen evolution reaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部