Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synt...Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synthetic methane can serve as its feed source.While this concern may motivate many researchers over the world to make their continuous effort to gain deep insight into the catalytic mechanism of this catalysis system and the essential cause of the catalyst deactivation,successful development of a catalyst with high performance,enhanced coking resistance and long-term operating stability will be the key to its industrial application.Here in this review pa-per,we demonstrate the high catalytic activity and stability of our two shaped Mo/HZSM-5 catalysts developed respectively for fixed-bed and fluidized-bed operations at severe reaction conditions.Thermodynamically,a pos-sibly high aromatization temperature is required to attain a desired high benzene formation rate,but adopting such a temperature will certainly accelerate coke formation and catalyst deactivation.Therefore,the focus of the catalyst development was laid on finding various effective ways of suppressing coke accumulation and catalyst deactivation at practically required severe reaction conditions,and much effort was made to attain the purpose.As a result,a highly active and selective pelleted Mo/HZSM-5 catalyst has been successfully developed and was stably run in a fixed-bed reactor under cyclic regeneration operation mode over 1000 h.In parallel a binder-free,fluidizable Mo/HZSM-5 catalyst with certain mechanical strength has also been developed and successfully tested in a dual circulating fluidized-bed reactor system to provide a stable benzene yield of about 12%at 1073 K and 3000 ml/g/h space velocity.展开更多
Steam reforming(SR)of fossil methane is already a well-known,documented and established expertise in the industrial sector as it accounts for the vast majority of global hydrogen production.From a sustainable developm...Steam reforming(SR)of fossil methane is already a well-known,documented and established expertise in the industrial sector as it accounts for the vast majority of global hydrogen production.From a sustainable development perspective,hydrogen production by SR of biomass-derived feedstock represents a promising alternative that could help to lower the carbon footprint of the traditional process.In this regard,bio-alcohols such as methanol,ethanol or glycerol are among the attractive candidates that could serve as green hydrogen carriers as they decompose at relatively low temperatures in the presence of water compared to methane,allowing for improved H_(2)yields.However,significant challenges remain regarding the activity and stability of nickel-based catalysts,which are most widely used in alcohol SR processes due to their affordability and ability to break C–C,O–H and C–H bonds,yet are prone to rapid deactivation primarily caused by coke deposition and metal particle sintering.In this state-of-the-art review,a portfolio of strategies to improve the performance of Ni-based catalysts used in alcohol SR processes is unfolded with the intent of pinpointing the critical issues in catalyst development.Close examination of the literature reveals that the efforts tackling these recurring issues can be directed at the active metal,either by tuning Ni dispersion and Ni-support interactions or by targeting synergistic effects in bimetallic systems,while others focus on the support,either by modifying acid-base character,oxygen mobility,or by embedding Ni in specific crystallographic structures.This review provides a very useful tool to orient future work in catalyst development.展开更多
The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % co...The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % conversionand a 98% selectivity at low temperature andunder low pressure, featuring high catalytic activity, goodstability, good adaptability to feedstocks and low productioncost.展开更多
Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Br...Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Branch Co.and the Branch of SINOPEC Catalyst Company has passed the appraisal.The catalyst aimed at boosting展开更多
The NC310 type catalyst for methanol synthesis developedby the SINOPEC Research Institute of NanjingChemical Company has passed the appraisal of researchachievements organized by the Science and TechnologyDivision of ...The NC310 type catalyst for methanol synthesis developedby the SINOPEC Research Institute of NanjingChemical Company has passed the appraisal of researchachievements organized by the Science and TechnologyDivision of the Sinopec Corp. The group of specialistsattending the appraisal meeting has recognized that thiscatalyst has reached the internationally advanced level interms of its overall catalytic performance.展开更多
文摘Direct catalytic conversion of methane to benzene at non-oxidative condition is considered as one of key reac-tions for constitution of sustainable carbon-cycling processes,since either biomethane or CO_(2)-based synthetic methane can serve as its feed source.While this concern may motivate many researchers over the world to make their continuous effort to gain deep insight into the catalytic mechanism of this catalysis system and the essential cause of the catalyst deactivation,successful development of a catalyst with high performance,enhanced coking resistance and long-term operating stability will be the key to its industrial application.Here in this review pa-per,we demonstrate the high catalytic activity and stability of our two shaped Mo/HZSM-5 catalysts developed respectively for fixed-bed and fluidized-bed operations at severe reaction conditions.Thermodynamically,a pos-sibly high aromatization temperature is required to attain a desired high benzene formation rate,but adopting such a temperature will certainly accelerate coke formation and catalyst deactivation.Therefore,the focus of the catalyst development was laid on finding various effective ways of suppressing coke accumulation and catalyst deactivation at practically required severe reaction conditions,and much effort was made to attain the purpose.As a result,a highly active and selective pelleted Mo/HZSM-5 catalyst has been successfully developed and was stably run in a fixed-bed reactor under cyclic regeneration operation mode over 1000 h.In parallel a binder-free,fluidizable Mo/HZSM-5 catalyst with certain mechanical strength has also been developed and successfully tested in a dual circulating fluidized-bed reactor system to provide a stable benzene yield of about 12%at 1073 K and 3000 ml/g/h space velocity.
基金The financial support of the Natural Sciences and Engineering Research Council of Canada(NSERC)the CIRCUIT Program(Centre for Innovation and Research on carbon utilization in industrial technologies,NSERC CREATE program)NSERC for the Alexander Graham Bell Canada Graduate Scholarship(BESCD)。
文摘Steam reforming(SR)of fossil methane is already a well-known,documented and established expertise in the industrial sector as it accounts for the vast majority of global hydrogen production.From a sustainable development perspective,hydrogen production by SR of biomass-derived feedstock represents a promising alternative that could help to lower the carbon footprint of the traditional process.In this regard,bio-alcohols such as methanol,ethanol or glycerol are among the attractive candidates that could serve as green hydrogen carriers as they decompose at relatively low temperatures in the presence of water compared to methane,allowing for improved H_(2)yields.However,significant challenges remain regarding the activity and stability of nickel-based catalysts,which are most widely used in alcohol SR processes due to their affordability and ability to break C–C,O–H and C–H bonds,yet are prone to rapid deactivation primarily caused by coke deposition and metal particle sintering.In this state-of-the-art review,a portfolio of strategies to improve the performance of Ni-based catalysts used in alcohol SR processes is unfolded with the intent of pinpointing the critical issues in catalyst development.Close examination of the literature reveals that the efforts tackling these recurring issues can be directed at the active metal,either by tuning Ni dispersion and Ni-support interactions or by targeting synergistic effects in bimetallic systems,while others focus on the support,either by modifying acid-base character,oxygen mobility,or by embedding Ni in specific crystallographic structures.This review provides a very useful tool to orient future work in catalyst development.
文摘The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % conversionand a 98% selectivity at low temperature andunder low pressure, featuring high catalytic activity, goodstability, good adaptability to feedstocks and low productioncost.
文摘Currently the project'Development and commercia application of FCC catalyst for boosting gasoline yield'jointly undertaken by the SINOPEC Research Institute of Petroleum Processing(RIPP),the SINOPEC Yanshan Branch Co.and the Branch of SINOPEC Catalyst Company has passed the appraisal.The catalyst aimed at boosting
文摘The NC310 type catalyst for methanol synthesis developedby the SINOPEC Research Institute of NanjingChemical Company has passed the appraisal of researchachievements organized by the Science and TechnologyDivision of the Sinopec Corp. The group of specialistsattending the appraisal meeting has recognized that thiscatalyst has reached the internationally advanced level interms of its overall catalytic performance.