The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-...Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-atom catalysts(SACs)maximize metal utilization and exhibit distinct catalytic behaviors due to their atomically dispersed nature.Over the past decade,SACs have demonstrated exceptional performance in various electrochemical and thermocatalytic reactions[1–3].However,despite these promising developments,several fundamental challenges hinder their practical implementation and large-scale commercialization.SACs face three major challenges:catalytic activity,stability,and scalable synthesis.Their isolated nature limits multi-electron transfer processes,making reaction kinetics highly sensitive to the coordination environment.To enhance catalytic activity,strategies such as secondary coordination effect,doping,and/or dual-atom configuration can be employed.Stability is another key issue,as single atoms tend to aggregate or undergo oxidation under reaction conditions,leading to performance decay.Strategies like strong metal-support interaction and ligand stabilization can be adopted to improve the durability of SACs.展开更多
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
文摘Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-atom catalysts(SACs)maximize metal utilization and exhibit distinct catalytic behaviors due to their atomically dispersed nature.Over the past decade,SACs have demonstrated exceptional performance in various electrochemical and thermocatalytic reactions[1–3].However,despite these promising developments,several fundamental challenges hinder their practical implementation and large-scale commercialization.SACs face three major challenges:catalytic activity,stability,and scalable synthesis.Their isolated nature limits multi-electron transfer processes,making reaction kinetics highly sensitive to the coordination environment.To enhance catalytic activity,strategies such as secondary coordination effect,doping,and/or dual-atom configuration can be employed.Stability is another key issue,as single atoms tend to aggregate or undergo oxidation under reaction conditions,leading to performance decay.Strategies like strong metal-support interaction and ligand stabilization can be adopted to improve the durability of SACs.