期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Covid-19 Forecasting with Deep Learning-based Half-binomial Distribution Cat Swarm Optimization 被引量:1
1
作者 P.Renukadevi A.Rajiv Kannan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期629-645,共17页
About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing p... About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy. 展开更多
关键词 Binomial distribution min-max normalization cat swarm optimization(cso) COVID-19 forecasting
暂未订购
基于ISCSO的智能电表误差和线损率联合评估模型
2
作者 余传祥 潘傲然 +2 位作者 毛文鹏 郭豪杰 余霖辉 《电力系统保护与控制》 北大核心 2025年第13期117-127,共11页
针对当前智能电表误差和线损率联合评估精度较低的问题,提出了一种基于改进沙猫群优化算法(improved sand cat swarm optimization algorithm, ISCSO)的智能电表误差和线损率联合评估模型。首先根据典型台区拓扑结构和电能量守恒定律确... 针对当前智能电表误差和线损率联合评估精度较低的问题,提出了一种基于改进沙猫群优化算法(improved sand cat swarm optimization algorithm, ISCSO)的智能电表误差和线损率联合评估模型。首先根据典型台区拓扑结构和电能量守恒定律确定了电表误差和线损率评估模型的适应度函数,并依据台区数据确定了参数范围。其次,采用变焦佳点集、威布尔最优值引导策略、蒲公英优化算法以及联想学习变异策略对沙猫群优化算法进行改进,并经测试函数验证了算法的优越性。最后,基于适应度函数和改进后的算法建立了智能电表误差和线损率联合评估模型,并通过算例验证了相比于带有遗忘因子递推最小二乘法的动态线损智能电表误差评估模型和智能电表误差与线损率联合评估的约束优化模型,所提方法在智能电表误差与线损率的评估精度上都有较大的提升。 展开更多
关键词 智能电表 线损率 沙猫群优化算法 误差评估
在线阅读 下载PDF
基于ISCSO算法的燃气-蒸汽联合循环机组负荷对象模型辨识
3
作者 徐晓雯 康英伟 《河南科技大学学报(自然科学版)》 北大核心 2025年第6期49-58,I0004,共11页
建立准确的燃气-蒸汽联合循环机组负荷对象的数学模型是提升机组负荷控制系统性能的重要前提。针对传统辨识方法在辨识精度和收敛速度方面存在的不足,提出一种基于改进沙猫群优化(ISCSO)算法的模型辨识方法。首先,利用Logistic混沌映射... 建立准确的燃气-蒸汽联合循环机组负荷对象的数学模型是提升机组负荷控制系统性能的重要前提。针对传统辨识方法在辨识精度和收敛速度方面存在的不足,提出一种基于改进沙猫群优化(ISCSO)算法的模型辨识方法。首先,利用Logistic混沌映射来改善初始种群;将灵敏度参数由线性变化调整为余弦型变化;引入差分进化变异机制以及高斯扰动改进方法,在提高寻优效率的同时有效避免陷入局部最优解;然后,采用ISCSO算法对模型参数进行寻优求解,得到模型的最优参数值;最后,采用开环阶跃实验得到的燃气-蒸汽联合循环机组312.06 MW负荷点处的数据与ISCSO算法和SCSO等算法的辨识结果进行对比验证。通过消融实验,验证了该算法中改进策略的有效性。研究结果表明:相较于对比算法,所提算法能建立较为准确的负荷对象模型,ISCSO辨识模型的平均绝对百分误差与均方根误差均最小,具有更好的收敛性能,为模型辨识提供了新的方法。 展开更多
关键词 燃气-蒸汽联合循环机组 负荷对象 模型辨识 改进沙猫群优化算法
在线阅读 下载PDF
基于CSO-RVM的瓦斯涌出量预测模型研究 被引量:4
4
作者 付华 任仁 +2 位作者 王雨虹 王馨蕊 单敏柱 《传感技术学报》 CAS CSCD 北大核心 2015年第10期1508-1512,共5页
为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行... 为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行之有效的方法。并用CSO算法对RVM瓦斯涌出量预测模型的核函数权重p和高斯核参数σ快速寻优。利用矿井无线传感器网络检测到的各项历史数据试验。结果表明,相比BP、SVM算法,该耦合模型有效提高了预测精度,具有更好的泛化能力,为矿井瓦斯预测提供理论支持。 展开更多
关键词 瓦斯涌出量预测 猫群算法(cso) 相关支持向量机(RVM) 组合核函数 信息融合
在线阅读 下载PDF
基于ISCSO-LSTM模型的刀具磨损预测 被引量:8
5
作者 肖斌 李炎炎 +1 位作者 段增峰 陈领 《组合机床与自动化加工技术》 北大核心 2023年第6期102-105,110,共5页
为进一步提高刀具磨损量预测模型的准确度,实现对刀具加工过程的在线监控。提出一种基于改进的沙猫算法(improved sand cat swarm optimization,ISCSO)和长短期记忆神经网络(long short-term memory,LSTM)的刀具磨损量预测模型。利用刀... 为进一步提高刀具磨损量预测模型的准确度,实现对刀具加工过程的在线监控。提出一种基于改进的沙猫算法(improved sand cat swarm optimization,ISCSO)和长短期记忆神经网络(long short-term memory,LSTM)的刀具磨损量预测模型。利用刀具的加速度振动信号为输入样本,应用长短期记忆神经网络对铣刀磨损值进行预测。针对沙猫算法收敛精度低等问题,引入混沌映射、非线性收敛因子和对立点检测机制,利用改进的沙猫算法优化长短期记忆神经网络的参数。实验结果表明ISCSO-LSTM模型的刀具磨损预测精度明显高于LSTM模型。 展开更多
关键词 刀具磨损 沙猫优化算法 长短期记忆网络 在线监测
在线阅读 下载PDF
基于CSO-AUKF的锂电池SOC估算方法 被引量:2
6
作者 吴华伟 洪强 +1 位作者 陈运星 马毓博 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页
电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨... 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 展开更多
关键词 车辆工程 锂电池汽车 荷电状态(SOC) 猫群(cso)算法 自适应无迹卡尔曼滤波(AUKF)算法
在线阅读 下载PDF
CSO-PID算法在空压机控制系统中的应用 被引量:10
7
作者 吕晨悦 施一萍 +2 位作者 刘瑾 张金立 程宗政 《传感器与微系统》 CSCD 北大核心 2021年第1期157-160,共4页
针对普通空压机普遍存在的耗能过高且控制效果不佳的问题,在研究比例-积分-微分(PID)算法和鸡群算法的基础上,对空压机的控制算法进行了改进,利用鸡群算法对PID的三个参数进行整定,并将这种智能算法应用到PLC控制器中。仿真实验和实际... 针对普通空压机普遍存在的耗能过高且控制效果不佳的问题,在研究比例-积分-微分(PID)算法和鸡群算法的基础上,对空压机的控制算法进行了改进,利用鸡群算法对PID的三个参数进行整定,并将这种智能算法应用到PLC控制器中。仿真实验和实际测试表明:该智能算法不仅实现了对空压机系统的有效控制,而且增强了系统的抗干扰能力,节能效果更佳。 展开更多
关键词 空压机 比例-积分-微分(PID)算法 鸡群优化算法
在线阅读 下载PDF
融合OOA的改进SCSO优化算法及其应用 被引量:1
8
作者 邹邦杰 刘国巍 《武汉理工大学学报》 2024年第11期151-156,共6页
为了提高沙猫优化算法(Sand Cat Swarm Optimization, SCSO)的收敛速度与跳出局部最优的能力,提出一种融合鱼鹰变异的改进沙猫算法(Osprey Sand Cat Swarm Optimization, OSCSO)。首先利用Bernoulli映射初始化种群值以防陷入局部最优解... 为了提高沙猫优化算法(Sand Cat Swarm Optimization, SCSO)的收敛速度与跳出局部最优的能力,提出一种融合鱼鹰变异的改进沙猫算法(Osprey Sand Cat Swarm Optimization, OSCSO)。首先利用Bernoulli映射初始化种群值以防陷入局部最优解。其次为了增加SCSO种群的多样性和跳出局部最优的能力引入自适应高斯柯西混合变异扰动与鱼鹰优化算法(Osprey Optimization Algorithm, OOA),同时采用精英反向学习机制尝试探索反向解以加快收敛速度。最后通过8个基准函数对OSCSO算法、SCSO算法和OOA算法进行测试对比实验,其结果证明改进的SCSO算法具有SCSO算法和OOA算法的优点,并将其应用在光伏功率预测上进一步验证有效性。 展开更多
关键词 改进沙猫群优化算法 Bernoulli映射 高斯柯西混合变异 鱼鹰算法 精英反向学习机制
原文传递
基于SCSO-SVM的行业供应链风险检测优化方法 被引量:4
9
作者 王宏刚 王一蓉 +2 位作者 于宙 李君婷 孙妮 《粘接》 CAS 2023年第2期193-196,共4页
为实现供应链风险等级的高精度检测,基于SVM的参数设置对SVM的性能的影响,提出一种基于沙丘猫群算法(SCSO)优化SVM的供应链风险等级检测方法。首先,通过层次分析法建立供应链风险等级评价指标体系;之后,由于SVM的参数设置会影响到SVM的... 为实现供应链风险等级的高精度检测,基于SVM的参数设置对SVM的性能的影响,提出一种基于沙丘猫群算法(SCSO)优化SVM的供应链风险等级检测方法。首先,通过层次分析法建立供应链风险等级评价指标体系;之后,由于SVM的参数设置会影响到SVM的性能,利用SCSO算法对SVM的参数进行了优化,并给出了一种新的基于SCSO-SVM的供应链风险识别算法。与单独的SVM模型相比,SCSO-SVM的供应链风险检测的准确率分别提高了3.06、7.04个百分点,从而说明SCSO-SVM可以有效提高供应链风险检测的精度。 展开更多
关键词 支持向量机 沙丘猫群算法 供应链 风险等级
在线阅读 下载PDF
一种基于KPCA-SCSO-SVM的装甲车发动机状态评估方法 被引量:1
10
作者 李英顺 于昂 +2 位作者 姬宏基 李茂 郭占男 《大连理工大学学报》 CAS CSCD 北大核心 2024年第4期426-432,共7页
润滑油在发动机各部件间流动时,不仅发挥其应有的功能,同时也承载了丰富的关于发动机运行状况的信息,能够有效地反映发动机状态.以某型装甲车底盘发动机为对象,提出一种对润滑油信息进行分析以实现发动机状态评估的方法.该方法基于核主... 润滑油在发动机各部件间流动时,不仅发挥其应有的功能,同时也承载了丰富的关于发动机运行状况的信息,能够有效地反映发动机状态.以某型装甲车底盘发动机为对象,提出一种对润滑油信息进行分析以实现发动机状态评估的方法.该方法基于核主成分分析(KPCA)和沙猫群优化(SCSO)算法优化的支持向量机(SVM),使用KPCA对收集的油液数据进行降维处理,得到的降维数据作为SVM的输入.随后,应用SCSO算法优化SVM的关键参数,建立状态评估模型.通过实际数据的实验验证及与其他几种状态评估模型的比较,结果显示该方法准确率达到了97.35%,能有效评估发动机状态,从而为发动机的维护提供重要参考. 展开更多
关键词 发动机 润滑油 状态评估 核主成分分析 沙猫群优化算法 支持向量机
在线阅读 下载PDF
基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正 被引量:1
11
作者 沈天行 秦华旺 《科学技术与工程》 北大核心 2024年第34期14716-14725,共10页
当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数... 当前环境下,气象要素的准确预报在农业生产,社会生活和交通运输方面起到了越来越重要的作用,因此提出了一种改进的沙猫群算法(sand cat swarm optimization, SCSO),用于优化CatBoost模型,以解决传统气温和风速预测不准确的问题。研究数据涵盖了南京地区2012年1月1日—2014年12月31日的气象数据,利用ERA5再分析数据作为真实数据。首先,将数据划分为训练集和验证集,利用SCSO优化CatBoost模型,以订正24、48、72 h刻预报的气温和风速。为了克服SCSO易陷入局部最优解和收敛速度慢的问题,采用Halton Sequence搜索算法初始化沙猫群位置,并引入莱维飞行和三角游走策略优化寻优过程。在迭代中,采用LOBL策略和边界突变算子确保不会陷入局部最优解。最后,利用改进的SCSO优化CatBoost的超参数,并结合K折交叉验证提高参数的可靠性和泛化性。结果表明,改进的SCSO-CatBoost模型相比XGBoost、LightGBM、传统GBDT、随机森林、支持向量机和线性回归模型具有更高的准确性和优越性,在24 h的气温和风速预测中均方根误差分别提升了0.514 5和0.174 9,在48、72 h的提升也十分显著。为提升气象要素预报准确性提供了科学依据和技术支持。 展开更多
关键词 catBoost 沙猫群优化算法 神经网络 PYTHON 气象预测 偏差订正
在线阅读 下载PDF
基于ISCSO-BP-PID的SMB组分纯度模糊解耦控制方法研究 被引量:1
12
作者 李凌 陈玉环 《电子测量技术》 北大核心 2024年第15期30-43,共14页
针对模拟移动床色谱分离系统中存在的强耦合、多变量、非线性和时滞等问题,提出了一种基于改进沙猫群优化算法的BP神经网络自调整PID参数的模拟移动床组分纯度模糊解耦控制方法。该方法首先通过模糊解耦消除了A、B组分纯度控制回路之间... 针对模拟移动床色谱分离系统中存在的强耦合、多变量、非线性和时滞等问题,提出了一种基于改进沙猫群优化算法的BP神经网络自调整PID参数的模拟移动床组分纯度模糊解耦控制方法。该方法首先通过模糊解耦消除了A、B组分纯度控制回路之间的耦合,然后结合改进的沙猫群优化算法和BP神经网络,实现了PID参数的自适应调整,从而有效控制A、B组分的纯度。在改进的沙猫群优化算法中,引入了Cubic混沌映射来初始化沙猫种群,以提高种群分布的均匀性;在搜索猎物阶段加入了可变螺旋搜索策略,使沙猫群拥有更多的搜索路径来调整自身位置;同时,融合了麻雀搜索算法的警戒机制,以加速算法的收敛速度。通过对12个CEC2022测试函数进行验证,证明了改进沙猫群优化算法的有效性。仿真结果表明,所提方法不仅能够有效消除A、B组分纯度控制回路间的耦合效应,而且在各个实际应用场景中均展现出卓越的性能。与传统的PID控制方法相比,在流量突变情况下,调节时间分别缩短了75.40%和77.57%,超调量分别减少了91.84%和81.96%。该方法具备较强的抗干扰能力和良好的鲁棒性,显著改善了整个系统的控制性能。 展开更多
关键词 模拟移动床 模糊解耦 沙猫群优化算法 Cubic混沌映射 可变螺旋搜索策略
原文传递
基于改进CSO-LSTM的两相流空隙率预测研究
13
作者 刘晓 阚哲 钱宇加 《传感器与微系统》 CSCD 北大核心 2022年第7期57-60,64,共5页
空隙率是石油化工企业中非常重要的参数之一。空隙率在线测量过程中存在较大的随机性和不确定性,很难预知空隙率的变化。为了实现对空隙率的预测,提前对两相流系统进行控制和优化,提出了基于改进猫群优化(CSO)算法长短期记忆(LSTM)网络... 空隙率是石油化工企业中非常重要的参数之一。空隙率在线测量过程中存在较大的随机性和不确定性,很难预知空隙率的变化。为了实现对空隙率的预测,提前对两相流系统进行控制和优化,提出了基于改进猫群优化(CSO)算法长短期记忆(LSTM)网络的空隙率预测算法。利用LSTM善于处理时间序列型数据的特点对空隙率进行预测,在CSO中引入模拟退火(SA)算法和平均惯性权重,改善了在预测中易陷入局部最优和全局搜索能力较弱的缺点,保证了位置的收敛性。结果表明,该算法模型具有较高的预测精度和收敛速度,可以更快更精确预测空隙率的变化,克服了数据不确定且随机的难点,对提前控制和优化两相流系统具有较高的工业应用价值。 展开更多
关键词 两相流 空隙率 改进猫群优化算法 模拟退火算法 平均惯性权重 长短期记忆
在线阅读 下载PDF
考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案优化方法 被引量:1
14
作者 刘长欣 余红玲 +3 位作者 王晓玲 郭章潮 李沛 王佳俊 《水利学报》 北大核心 2025年第3期375-386,共12页
长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐... 长距离输水隧洞检修期排水时,壁面附着的淡水壳菜会死亡腐烂并释放出大量有害气体,严重威胁检修安全。现有地下工程通风安全研究侧重于考虑通风效果的通风方案比选,难以获取兼顾通风效果和通风成本的全局最优方案,且缺乏考虑淡水壳菜腐烂有害气体的影响。此外,基于帕累托最优准则(PO)的多目标优化方法在输出非支配解集后,需要结合多准则决策方法进行二次选择方可得到最优解,优化效率较低。针对上述问题,提出考虑淡水壳菜腐烂影响的长距离输水隧洞检修通风方案模糊逻辑多目标优化方法。首先,结合模糊隶属度函数将多个优化目标转换到相同的连续域空间,并综合处理成统一的优化指标,构建基于模糊逻辑(FL)的多目标优化数学模型,以进行兼顾通风效果与通风成本的全局寻优;然后,提出基于混沌映射和最优邻域扰动策略改进的沙漠猫群优化(ISCSO)算法求解多目标优化数学模型,避免非支配解集的二次选择,提高优化效率。性能测试和案例研究表明,本文提出的ISCSO-FL多目标优化方法在解的质量、解的鲁棒性以及计算复杂度等方面具有优越性。本文方法得到的最优方案能够满足通风安全需求,通风成本相比初始方案降低21.9%,且优化效率相比基于PO准则的多目标优化方法提高68.1%。本研究可为地下工程通风方案的设计与优化提供新思路。 展开更多
关键词 长距离输水隧洞 检修通风 淡水壳菜腐烂 多目标优化 模糊逻辑 改进沙漠猫群优化算法
在线阅读 下载PDF
电力现货市场环境下考虑边际成本的综合能源系统调度策略 被引量:1
15
作者 王永利 张云飞 +3 位作者 赵伟博 马恺玮 李强 姜斯冲 《科学技术与工程》 北大核心 2025年第3期1075-1086,共12页
综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略... 综合能源系统(integrated energy system,IES)参与电力现货市场交易时,由于市场供需关系的变化导致交易价格具有不确定性。因此,对综合能源系统运行边际成本进行精细化分析,研究充分利用综合能源系统灵活性资源参与市场的最优调度策略。首先,分析了外部现货市场环境下市场价格不确定性典型场景处理方法,并研究了综合能源系统内部多种源荷可调资源及运行成本结构;其次,建立了在电力市场价格不确定性条件下考虑系统边际成本交易优化模型,并提出沙猫群优化算法进行求解。最后,通过对实际案例的仿真验证。结果表明:该策略不仅可以降低IES的运行成本,还能增强其对市场价格不确定性的适应能力,为综合能源系统在电力现货市场环境下的运行提供了新的思路和方法,有助于实现能源系统参与市场调度的经济性和可靠性双重优化。 展开更多
关键词 电力现货市场 边际成本 综合能源系统 沙猫群优化算法
在线阅读 下载PDF
基于MVMD和ISCSO-HKELM的质子交换膜燃料电池故障诊断
16
作者 杜董生 连贺 +2 位作者 邓祥帅 任一鸣 赵哲敏 《综合智慧能源》 CAS 2024年第12期17-28,共12页
针对质子交换膜燃料电池(PEMFC)系统的原始信号受到高温和强背景噪声影响导致故障诊断准确率较低的问题,提出一种基于多元变分模态分解(MVMD)和改进沙丘猫优化算法(ISCSO)优化混合核极限学习机(HKELM)的PEMFC故障诊断模型。通过小波硬阈... 针对质子交换膜燃料电池(PEMFC)系统的原始信号受到高温和强背景噪声影响导致故障诊断准确率较低的问题,提出一种基于多元变分模态分解(MVMD)和改进沙丘猫优化算法(ISCSO)优化混合核极限学习机(HKELM)的PEMFC故障诊断模型。通过小波硬阈值(WHTD)对PEMFC的原始信号进行去噪,利用MVMD将去噪后信号进行模态分解进而得到一系列本征模态函数(IMF),利用方差贡献率、相关系数和信息熵筛选出最优的IMF进行信号重构。通过逻辑(Logistic)映射、透镜成像折射反向学习(ROBL)、非线性动态因子和黄金正弦策略改进沙丘猫算法(SCSO),得到ISCSO。利用ISCSO对HKELM进行优化,并基于改进后的ISCSO-HKELM对重构信号进行特征提取进而实现故障诊断。将所提出的WHTD-MVMD-ISCSO-HKELM故障诊断模型与其他算法进行对比验证,试验结果表明,所提方法能够明显提升故障诊断的准确率,具有一定的可行性和优越性。 展开更多
关键词 混合核极限学习机 改进沙丘猫优化算法 多元变分模态分解 质子交换膜燃料电池 故障诊断
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
17
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于动态分区与收敛速度控制器的改进竞争群优化算法
18
作者 张伟 伊杰昌 《控制与决策》 北大核心 2025年第10期3019-3028,共10页
为提升竞争群优化(CSO)算法在解决复杂高维优化问题时的性能,提出一种基于分区策略与收敛速度控制器的改进竞争群优化(PCSCCSO)算法.首先,采用适应度变化率驱动的动态分区策略,以增强算法的收敛性和搜索效率;然后,提出一种快速CSO策略,... 为提升竞争群优化(CSO)算法在解决复杂高维优化问题时的性能,提出一种基于分区策略与收敛速度控制器的改进竞争群优化(PCSCCSO)算法.首先,采用适应度变化率驱动的动态分区策略,以增强算法的收敛性和搜索效率;然后,提出一种快速CSO策略,通过三重竞争机制增强算法的寻优能力:获胜粒子通过对立学习策略更新,失败粒子向获胜子群平均位置学习,劣败粒子通过变异增强局部搜索,这些策略能够有效平衡全局探索与局部开发,提高算法的寻优效率;最后,结合粒子与全局最优解间的余弦相似度以及停滞计数,设计自适应的收敛速度控制器,用以调节粒子的搜索行为,从而避免粒子陷入局部最优解,加速全局收敛.理论分析验证了所提出算法的稳定性和收敛性.实验结果表明,与其他改进算法相比,PCSCCSO算法在处理复杂高维优化问题时具有更好的收敛精度和收敛效率. 展开更多
关键词 竞争群优化算法 高维优化 种群分区 三重竞争 快速cso策略 收敛速度控制器
原文传递
游梁式抽油机故障集成诊断模型及优化算法
19
作者 张强 李青 +1 位作者 薛冰 胡月 《信息与控制》 北大核心 2025年第5期696-709,共14页
针对游梁式抽油机的故障诊断问题,提出了一种基于振动分析和改进集成学习模型的游梁式抽油机故障诊断方法。采用Stacking集成学习模型将随机森林(Random Forest,RF)、支持向量机(Support Vector Ma-chine,SVM)、梯度提升(Gradient Boost... 针对游梁式抽油机的故障诊断问题,提出了一种基于振动分析和改进集成学习模型的游梁式抽油机故障诊断方法。采用Stacking集成学习模型将随机森林(Random Forest,RF)、支持向量机(Support Vector Ma-chine,SVM)、梯度提升(Gradient Boosting,GB)和极端梯度提升(Ex-treme Gradient Boosting,XGboost)作为基学习器,多元线性回归作为元学习器,以提高单一模型的准确性和泛化能力。同时,提出了改进的沙猫群优化算法(improved sand cat swarm optimization algorithm,ISCSO),用于对模型超参数进行优化,解决手工调参难度大的问题。通过实验对比ISCSO-Stacking模型与其他模型的预测结果发现,ISCSO-Stacking模型的预测准确率达到了97%,优化后的超参数显著提升了模型性能,并降低了过拟合风险。 展开更多
关键词 Stacking集成学习模型 沙猫群优化算法 振动分析 故障诊断 游梁式抽油机 超参数优化
原文传递
单纯形法引导的自适应沙猫群优化算法及应用 被引量:1
20
作者 罗文涛 钱谦 +3 位作者 潘家文 张晓丽 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第8期1869-1877,共9页
为了克服沙猫优化算法(SCSO)在高维优化问题上,易陷入局部最优和收敛精度差的问题,提出了一种单纯形法引导的自适应沙猫群优化算法(SASCSO).首先,采用了一种自适应围捕策略,使沙猫个体随机出现在自适应控制的算法搜索边界内,帮助算法逃... 为了克服沙猫优化算法(SCSO)在高维优化问题上,易陷入局部最优和收敛精度差的问题,提出了一种单纯形法引导的自适应沙猫群优化算法(SASCSO).首先,采用了一种自适应围捕策略,使沙猫个体随机出现在自适应控制的算法搜索边界内,帮助算法逃逸局部陷阱.其次,利用单纯形法引导较差个体构建几何搜索路径以提升算法的搜索能力.与其他对比算法相比,SASCSO在100维度的CEC2017基准函数测试集的综合优胜率为75.86%,结合非参数分析表明该算法是解决高维复杂优化问题的可行方法.此外,将SASCSO应用于三维无线传感器网络覆盖和复杂环境下无人机航径优化问题,结果显示SASCSO在两个实际问题上均提供了最优的方案,验证了SASCSO在实际优化中的适用性和优越性. 展开更多
关键词 沙猫群优化算法 自适应围捕策略 单纯形法 无线传感器网络覆盖 无人机航径优化
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部