For optimal design of a gating system,the setting of diagnosis parameters is very important.In this study,the permanent mold casting process was selected because most of the other casting processes have more complicat...For optimal design of a gating system,the setting of diagnosis parameters is very important.In this study,the permanent mold casting process was selected because most of the other casting processes have more complicated factors that influence the mold filling pattern compared to the permanent mold casting process,such as the surface roughness of mold,gas generation from the mold wash and binder of sand mold,and the gas permeability through a sand mold,etc.Two diagnosis parameters(flow rate difference and arrival time difference) of molten metal flow pattern in the numerical simulation are suggested for design of an optimum casting system with a permanent mold.The results show that the arrival time difference can be used as one important diagnosis parameter of the complexity of the runner system and its usefulness has been verified via making aluminum parts using permanent mold casting(Fig.9).展开更多
To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure paramet...To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.展开更多
This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part wei...This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.展开更多
To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Co...To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and...The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate mode...Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process.展开更多
The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and...The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.展开更多
The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic for...The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.展开更多
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur...In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.展开更多
Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of ...Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of the final product. Based on previous investigation, the precipitation sequence and temperature, position and mode, as well as the size, morphology, and number of different types of precipitates were reviewed. The effects of C, N, Nb, Ti, and V on the precipitation behavior and surface transverse cracks in continuous casting slabs were summarized, with a particular emphasis on the new achievements concerning Ti addition. The critical amounts of different elements to avoid serious surface cracks during continuous casting were proposed. The control mechanisms and industrial effects of composition optimization, cooling design, and chamfered mold configuration to improve surface transverse cracks in continuous casting slabs were also illustrated, and the recent application of surface microstructure control technology was emphasized. The characteristics, advantages, and shortcomings of existing theoretical and experimental methods in investigating continuous casting surface cracks regarding precipitation are finally discussed, and a new setup with advanced functions is introduced.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel i...The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.展开更多
The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were i...The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots.展开更多
The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the act...The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.展开更多
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ...The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.展开更多
This paper discusses an experimental investigation into the fluidity of AZ91D-1 wt.%Ca O magnesium melt via induction for thin-section investment casting.Plaster molds with thin spiral cavities(0.5 to 1.5 mm square se...This paper discusses an experimental investigation into the fluidity of AZ91D-1 wt.%Ca O magnesium melt via induction for thin-section investment casting.Plaster molds with thin spiral cavities(0.5 to 1.5 mm square sections)were designed and manufactured to assess the impact of casting conditions on filling length,as magnesium alloys cause severe melting and melt-mold exothermic reactions,making investment casting challenging.Combinations of traditional Mg-mold reaction mitigation techniques,such as applying a protective mold coating(Yttria)and vacuum,were examined to determine their role in the filling process.The results suggest that when induction is employed to melt reactive alloys,these methods are not always beneficial,as initially thought.Particularly at higher melt temperatures,the combination of Yttria-coated molds with low-pressure vacuum induction significantly reduce fluidity:vacuum induced melt levitation which promotes oxidation with the residual atmosphere;and Yttria-coating cracking due to thermal stress during the mold fabrication slows filling and promotes significant melt-mold reaction.This study shows that best results to investment cast thin-sections are obtained by avoiding both vacuum and protective coatings,providing a viable route for the precision manufacturing of stent biomedical devices.展开更多
基金the international cooperative program between KITECH(Korea Institute of Industrial Technology)and SRIF(Shenyang Research Institute of Foundry)
文摘For optimal design of a gating system,the setting of diagnosis parameters is very important.In this study,the permanent mold casting process was selected because most of the other casting processes have more complicated factors that influence the mold filling pattern compared to the permanent mold casting process,such as the surface roughness of mold,gas generation from the mold wash and binder of sand mold,and the gas permeability through a sand mold,etc.Two diagnosis parameters(flow rate difference and arrival time difference) of molten metal flow pattern in the numerical simulation are suggested for design of an optimum casting system with a permanent mold.The results show that the arrival time difference can be used as one important diagnosis parameter of the complexity of the runner system and its usefulness has been verified via making aluminum parts using permanent mold casting(Fig.9).
基金Item Sponsored by National Natural Science Foundation of China(50274203)National High Technology Research and Development Program of China(2001AA337040)
文摘To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.
基金supported by the National Natural Science Foundation of China(No.52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201).
文摘This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.
基金supported by the Startup Foundation of Shenyang Agriculture University(No.X2023050)the Fundamental Research Funds for the Central Universities(No.N2209006)the National Natural Science Foundation of China(No.U22A20173).
文摘To address the current issues with the conventional slide gate system utilized in the steel teeming process,a unique electromagnetic induction controlled automated steel teeming(EICAST)technology has been developed.Cooling means of spiral coil in this technology is directly related to its service life.Firstly,heat transfer processes of air cooling and spray cooling were compared and analyzed.Secondly,the impacts of water temperature,water flow rate and air flow rate were examined in order to maximize the spray cooling effect.To maintain coil temperature at a low value consistently throughout the entire thermal cycle process of the ladle,a combined cooling mode was finally employed.Numerical simulation was applied to examine the coil temperature variation with different cooling systems and characteristics.Before coil operation,spray cooling is said to be more effective.By controlling the water flow rate and air flow rate,the spray cooling effect is enhanced.However,water temperature has little or no impact when using spray cooling.Air cooling during the secondary refining process and spray cooling prior to coil operation are combined to further lower coil temperature.When the direction of the spray cooling is from bottom to top,the coil temperature is lowered below 165℃.A practical induction coil cooling plan was provided for the EICAST technology’s production process.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金National Natural Science Foundation of China(52201054,52175368)National Science and Technology Major Projects(J2019-VI-0018-0133)+2 种基金Liaoning Provincial Science and Technology Program(2023-BS-019,2023-MS-020)National Key R&D Program of China(2021YFB3700401)Key Specialized Research and Development Break-Through-Unveiling and Commanding the Special Project Program in Liaoning Province(2021JH15)。
文摘The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.
基金sponsored by Tsinghua-Toyota Joint Research Fund
文摘Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process.
基金supported by the National Natural Science Foundation of China(No.52293395)National Key R&D Program of China(No.2021YFB3702403).
文摘The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.
基金supported by the Application Technology of Automotive Steels(No.2021040300048)the National Natural Science Foundation of China(No.52304347)+2 种基金Hebei Provincial Natural Science Foundation(No.E2019501008),China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202320)Natural Science Foundation of Liaoning Province(Nos.2023-MSBA-135 and 2023-BSBA-107)Fundamental Research Funds for the Central Universities(Nos.N2409008 and N2409006).
文摘The electromagnetic swirling flow in nozzle(EMSFN)technique is designed to mitigate the adverse effects of unstable and uneven flow within the submerged entry nozzle in continuous casting.Utilizing electromagnetic forces,EMSFN stabilizes the flow within the nozzle,leading to a more controlled flow in the mold.Numerical simulations were used to quantitatively analyze the magnetic and flow fields in a slab continuous casting system under EMSFN.Results indicate that EMSFN significantly stabilizes the outflow from the nozzle,with stability increasing with higher current intensity.At 10,000 Ampere-turns(At)of the coil,meniscus fluctuations were unstable.They stabilized at 13,000 At,with minimal changes observed beyond this point.The optimal current intensity for stable mold flow,at a casting speed of 1.56 m/min,is 13,000 At.These findings confirm the effectiveness of EMSFN in stabilizing the internal flow field of the slab mold and determining optimal operational current intensity.
基金funded by the Beijing Nature Sciences Fund Haidian Originality Cooperation Project (Grant No. L212002)。
文摘In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘Precipitation of carbides, nitrides, and carbonitrides is an important factor influencing the formation of surface transverse cracks in the continuous casting of microalloyed steel, affecting the quality and yield of the final product. Based on previous investigation, the precipitation sequence and temperature, position and mode, as well as the size, morphology, and number of different types of precipitates were reviewed. The effects of C, N, Nb, Ti, and V on the precipitation behavior and surface transverse cracks in continuous casting slabs were summarized, with a particular emphasis on the new achievements concerning Ti addition. The critical amounts of different elements to avoid serious surface cracks during continuous casting were proposed. The control mechanisms and industrial effects of composition optimization, cooling design, and chamfered mold configuration to improve surface transverse cracks in continuous casting slabs were also illustrated, and the recent application of surface microstructure control technology was emphasized. The characteristics, advantages, and shortcomings of existing theoretical and experimental methods in investigating continuous casting surface cracks regarding precipitation are finally discussed, and a new setup with advanced functions is introduced.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant No.U1860111)Weifang Science and Technology Development Plan Project(Project No.2023ZJ1166).
文摘The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.
基金financially supported by the Major Projects in Aviation Engines and Gas Turbines (Grant No.2019-VI-0020-0136)the National Key Research and Development Program of China (Grant Nos.2022YFB3705101&2022YFB3705102)+1 种基金the National Natural Science Foundation of China (Grant No.U1708253)the Fundamental Research Funds for the Central Universities,China (Grant No.N2302005)。
文摘The low frequency electromagnetic casting(LFEC)was used to prevent hot cracking during the solidification process of GH4742 superalloy ingot.The effects of LFEC on the solidification macrostructure of the ingot were investigated through experiments and simulation.The results show that the average grain size decreases after application of LFEC.At the same time,the fraction of equiaxed grains increases compared with the ingots that without LFEC.In addition,the average grain size decreases and the fraction of equiaxed grains increases with increasing the current frequency.When the current frequency increases from 5 Hz to 20 Hz,the average grain size decreases from 5.39 mm to 4.74 mm,and the fraction of equiaxed grains increases from 41.21%to 55.24%.The distribution of Lorentz force,melt flow field and temperature field in the melt was simulated using COMSOL Multiphysics software.It is found that the Lorentz force increases and the forced convection is enhanced with increasing the current frequency,thus the melt flow velocity and heat transfer in the melt are promoted.It can facilitate the heterogenous nucleation in the melt,resulting in grain refinement,and further preventing hot cracking of large size ingots.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.52171241,52373251,52201301,51801137)Natural Science Foundation of Tianjin City,China(No.22JCQNJC00750)Tianjin University of Technology Graduate Research Innovation Project,China(No.YJ2235)。
文摘The Mg−1Zn−1Sn and Mg−1Zn−1Sn−0.2Ca alloy scaffolds were prepared via infiltration casting using 3D-printed Ti templates to achieve complete and accurate control of the pore structure.The results indicate that the actual porosity and pore size of the prepared P model for each pore size are greater than the designed values.The addition of Ca changes the second phase of the alloy from Mg_(2)Sn to CaMgSn and refines its microstructure.The compressive yield strength and compressive modulus of the Mg−1Zn−1Sn−0.2Ca alloy scaffold reach 32.61 MPa and 0.23 GPa,respectively.The corrosion current density is measured at 14.64μA/cm^(2),with an instantaneous corrosion rate of 0.335 mm/a.Both scaffolds exhibit excellent biocompatibility and no cytotoxicity.Additionally,the antibacterial effects of both alloys on E.coli are greater than 97.81%.These results indicate that Mg alloy scaffolds have great potential for clinical applications.
基金financially supported by the National Natural Science Foundation of China(No.52473228).
文摘The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.
基金financed by National Funds through the Portuguese funding agency,FCT–Funda??o para a Ciência e a Tecnologia,within the strategic projects UIDB/04436/2020,UIDB/00481/2020 and LA/P/0063/2020(DOI 10.54499/LA/P/0063/2020)。
文摘This paper discusses an experimental investigation into the fluidity of AZ91D-1 wt.%Ca O magnesium melt via induction for thin-section investment casting.Plaster molds with thin spiral cavities(0.5 to 1.5 mm square sections)were designed and manufactured to assess the impact of casting conditions on filling length,as magnesium alloys cause severe melting and melt-mold exothermic reactions,making investment casting challenging.Combinations of traditional Mg-mold reaction mitigation techniques,such as applying a protective mold coating(Yttria)and vacuum,were examined to determine their role in the filling process.The results suggest that when induction is employed to melt reactive alloys,these methods are not always beneficial,as initially thought.Particularly at higher melt temperatures,the combination of Yttria-coated molds with low-pressure vacuum induction significantly reduce fluidity:vacuum induced melt levitation which promotes oxidation with the residual atmosphere;and Yttria-coating cracking due to thermal stress during the mold fabrication slows filling and promotes significant melt-mold reaction.This study shows that best results to investment cast thin-sections are obtained by avoiding both vacuum and protective coatings,providing a viable route for the precision manufacturing of stent biomedical devices.