In order to improve the service performance of Al_(2)O_(3)-SiC-C castables,a novel Si-N-O composite micropowder was synthesized by the chemical combustion method.Using brown corundum,sintered alumina,silicon carbide,a...In order to improve the service performance of Al_(2)O_(3)-SiC-C castables,a novel Si-N-O composite micropowder was synthesized by the chemical combustion method.Using brown corundum,sintered alumina,silicon carbide,activeα-Al_(2)O_(3)micropowder,SiO_(2)micropowder,calcium aluminate cement,Si powder and spherical asphalt as the raw materials,adding additive of Si-N-O composite micropowder,Al_(2)O_(3)-SiC-Si_(3)N_(4)/Si_(2)N_(2)O-C castables were prepared.The effects of the Si-N-O composite micropowder addition on the mechanical properties and oxidation resistance of the castables were investigated,and the intrinsic mechanism of strengthening and antioxidation caused by this novel additive was discussed.Experimental results show the introduction of Si-N-O composite micropowder leads to significant improvement in the cold strength,oxidation resistance,thermal shock resistance and hot modulus of rupture of the Al_(2)O_(3)-SiC-C castables.When the Si-N-O composite micropowder addition is approximately 3 mass%,the castable possesses the best comprehensive performance.展开更多
High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employ...High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employment of the Split-Hopkinson pressure bar(SHPB)method was adopted to test the dynamic failure behavior of alumina-magnesia castables under various impact velocities.The results demonstrate that the greater the impact velocity,the more intense the sample damage.The dynamic compressive stress,the ultimate strain,and the strain energy of all samples display a strain rate hardening effect,and this phenomenon is more conspicuous in the samples incorporating nano-additives.The nano-additives show a positive influence on the dynamic mechanical properties of the castables.展开更多
The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory cas...The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory castables.In this work,ladle slag was added into Al_(2)O_(3)-Mgo refractory castables and its influence on the microstructure evolution,mechanical properties and thermal shock resistance of the castables was investigated.The phase composition and contents of the castables during the corrosion process were calculated by FactSage TM(6.2)and studied.The results indicate that the residual strength decreases as the ladle slag addition increases from 0 to 6 mass%.While the hot modulus of rupture of the castable with 6%ladle slag significantly decreases by approximately 80%compared with the one without ladle slag.The elastic modulus and CMOR of the castables decrease with slag-adding,which leads to the increase of liquid phase contents inside the samples.展开更多
The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel.In consideration of the low bulk density and thermal conductivity of pear...The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel.In consideration of the low bulk density and thermal conductivity of pearlescent sand,the thermal insulation performance of castables was attempted to be improved by adding pearlescent sand.Pearlescent sand was modified to prevent the strength of its porous structure from deteriorating.The modification mechanism of pearlescent sand and the effect of pearlescent sand on the performance of bauxite castables were studied.The results suggested that the addition of the modified pearlescent sand significantly raised the apparent porosity and decreased the bulk density of bauxite castable.At 1000℃,the bulk density of more than 60%of the modified pearlescent sand-bauxite castable was only 2.03 g/cm^(3).The mechanical properties and thermal shock resistance of the modified pearlescent sand-bauxite castable were inferior to those of conventional bauxite castable but were adequate to meet the use conditions of casta-bles for tundish permanent linings.At high temperatures of 200-800℃,the thermal conductivity of more than 60%of the modified pearlescent sand-bauxite castable was smaller than that of conventional bauxite castable.The addition of the modified pearlescent sand can greatly reduce the thermal conductivity and bulk density of bauxite castable.展开更多
Ferrotitanium slag(FS)is a waste slag produced during the smelting of ferrotitanium alloys by thermite reduction.Its alumina content is high and can be used as alumina raw material.Iron runner castables containing dif...Ferrotitanium slag(FS)is a waste slag produced during the smelting of ferrotitanium alloys by thermite reduction.Its alumina content is high and can be used as alumina raw material.Iron runner castables containing different amounts of FS were prepared and characterized.The results show that the introduction of FS is beneficial to the sintering of the castables sample.When the FS concentration is 11.2 wt.%,the aggregate and matrix of the castables sample have a good combination,and the mechanical strength of the Al_(2)O_(3)–SiC–C castable reaches a maximum at room temperature.However,excessive introduction of FS generates a large amount of anorthite phase,which reduces the mechanical strength of the Al_(2)O_(3)–SiC–C castable at room temperature.In addition,the high-melting phase CaTiO_(3)is formed in FS,which has good mechanical properties.Meanwhile,the cracks of FS are reduced,and the combination between phases is closer,thus significantly improving the hot modulus of rupture of the castable.When the FS concentration is not above 33.6 wt.%,the castables show good slag resistance.The TiO_(2)in FS is transformed into TiC by carbothermal reaction,which is enriched at the boundary and prevents further reaction of the slag.展开更多
Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale spec...Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale specimens can pose more challenges than lab-scale samples.In this study,the dry-out behavior and explosion resistance of microsilica-gel bonded nocement castables(NCCs)were investigated on both lab-and industrial-scale specimens,employing various drying agents.First,the fast dry-out mechanism was assessed using thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),and scanning electron microscopy(SEM)on lab-scale small samples.Then,the drying behavior of industrial-scale large samples(300 mm×300 mm×300 mm cubes,approximately 80 kg)was studied using a unique macro-thermo-balance(macro-TGA).The results showed that EMSIL-DRY^(®)reduced the temperature level for maximum dewatering rate and effectively prevented explosions during heat-up,compared to other polymer fibres.The use of a specialty drying agent(EMSIL-DRY^(®))significantly improved the explosion resistance,as demonstrated by the production of a perfect 400 kg block fired to 850℃at a rate of 50℃·h^(-1).This research contributes to the understanding and application of cement-free castables in industrial settings.展开更多
Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some...Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some circumstances resistance to erosion from abrasive particles.Given the large processing output of the heavy industries such as the cement and steel ones which both require high temperature processes,the refractories structures span various meters and weight of several tons.As the water removal stage of hydraulic bonded castables in industrial sites takes hours(10-60 h)due to the risk of explosive spalling,efforts to mitigate it are commonly studied.This has provided theoretical understanding of the general aspects of drying and important tools,such as the thermogravimetry analysis(TGA),for the design of refractory compositions with higher explosive spalling resistance.However,the optimization of this process is still far from the industrial reality especially because the actual linings that require the drying are orders of magnitude larger than the samples considered in the laboratory tests.Therefore,this study proposed the analysis of the sample volume effect on the water removal dynamics through TGA of high alumina castables with calcium aluminate cement.Conventionalφ5 cm×5 cm cylindrical samples were assessed in a laboratory scale equipment whereas macro TGA were carried out considering 20 cm×20 cm×20 cm and 30 cm×30 cm×30 cm cubic samples.Additionally,the effect of polymeric fibers was also considered.It was found out that the different thermal gradients within the macro TGA samples resulted in an inflection on the sample’s heating rate and that the mass loss was affected by the volume considered,especially for the composition without additives.These findings highlight the requirement of carefully taking into consideration the different dimensional sizes and thermal gradients in the samples when analyzing and interpreting the laboratory studies,and especially when trying to extrapolate such results to the industrial reality.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
To maintain the volume stability of lightweight magnesia-silica castables during heating,lightweight spherical forsterite aggregates(8-5,5-3,3-1 and 1-0 mm),pre-synthesized forsterite fine powder(≤0.074 and≤0.044 mm...To maintain the volume stability of lightweight magnesia-silica castables during heating,lightweight spherical forsterite aggregates(8-5,5-3,3-1 and 1-0 mm),pre-synthesized forsterite fine powder(≤0.074 and≤0.044 mm),natural silica powder(≤0.074 mm),middle grade magnesia fine powder(≤0.074 and≤0.044 mm)and silica fume were used as the raw materials to prepare lightweight magnesia-silica castables,and the magnesia fine powder and natural silica powder were gradually replaced by pre-synthesized forsterite fine powder(10%,20%,30%and 40%,by mass).The properties of the castables were tested and the microstructure was analyzed.The influence of the pre-synthesized forsterite fine powder addition on their properties was researched.The results show that:with the increase of the pre-synthesized forsterite fine powder addition in the matrix,the workability of the castables is almost the same.After being heated at 1450℃for 3 h,the bulk density of the castables increases,the apparent porosity decreases,the permanent linear change changes from expansion to shrinkage,the cold strengths increase firstly and then decrease,and the thermal conductivity at different temperatures increases.Generally,the optimal pre-synthesized forsterite fine powder addition is 20%.展开更多
The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and ...The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and 38CrMoAl steel containing 0.876 wt.%Al on the cleanliness of 38CrMoAl steel was studied and compared with that of fused magnesia castable.The results show that the micropores in the microporous magnesia castable can promote the formation of dense and continuous MgO-Al_(2)O_(3)layer,which can inhibit the further pollution of molten steel by refractories,whereas the MgO-Al_(2)O_(3)layer formed in test of fused magnesia castable is not continuous.After 30 min holding,the total oxygen content in the steel samples for the test of microporous magnesia castable is only 42.2%of that for the test of fused magnesia castable.The inclusions in the steel samples for the test of microporous magnesia castable are also less than those for the test of fused magnesia castable.It shows that microporous magnesia castable is a promising tundish refractory for the preparation of clean high-Al steel.展开更多
To enhance the serdice life of magnesia based slag dam, composite slag dam was designed to be cast with alumina magnesia castables in slag line and magnesia castables in molten steel zone. Workability of the magnesia ...To enhance the serdice life of magnesia based slag dam, composite slag dam was designed to be cast with alumina magnesia castables in slag line and magnesia castables in molten steel zone. Workability of the magnesia castables for the slag dam was improved and a suitable vibration shaping method was adopted to combine it with alumina magnesia castables. The result shows: (1) workability and setting performance of magtwsia castables can be improved to match with alumina magnesia castables by adjusting setting retarder and water reducing agent, and adding proper silica fume ; (2) composite slag dam cart be prepared with alumina m,agnesia castables and the improved magnesia castables, whether by up - down composite method or right - left composite method; in order to get full vibration arrd make interface .fluctuation have proper amplitude, the vibration time oJ the two methods after two different castables contact with each other is 3 and 2.5 minutes, respectively; (3)the result of the on-site test proves that the design aims for reducing pollution to hot metal and improving corrosion resistance have been achieved.展开更多
In order to prolong the working time of calcined flint clay-bauxite castables during construction at high temperature,boric acid was added into the castables. The effect of boric acid on working time and curing cold c...In order to prolong the working time of calcined flint clay-bauxite castables during construction at high temperature,boric acid was added into the castables. The effect of boric acid on working time and curing cold crushing strength of the castables at 25 ℃ and 35 ℃ were investigated. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding,the specimens were heat treated at 1 000 ℃,1 300 ℃,and 1 500 ℃ for 3 h,respectively. The permanent linear change,bulk density,modulus of rupture,and cold crushing strength were determined. The result shows that there is no need to add boric acid when calcined flint clay-bauxite castables works at 25 ℃; when calcined flint clay-bauxite castables works at 35 ℃,boric acid can increase the working time of the castables,but decrease the curing cold crushing strength a little. Adding boric acid into calcined flint clay-bauxite castables doesn't worsen performance of the castables.展开更多
Thermal behavior and physical properties of castables during curing and drying-out are associated with their binding system. In this work, five alumina based ( Al2O3 〉 87% ) castables with different combinations of...Thermal behavior and physical properties of castables during curing and drying-out are associated with their binding system. In this work, five alumina based ( Al2O3 〉 87% ) castables with different combinations of binding materials, i. e. , ( 1 ) CA cement (CA) + Reactive alumina ( RA ) + H2O ; ( 2 ) high level addi- tion of CA + Microsilica (MS) + H2O ; ( 3 ) low level addition of CA + MS + H2O ; (4) MS + Hydratable alumina + H20 and ( 5 ) MS + Magnesia + H2O, respectively, have been investigated on the flowability and thermal behavior during curing at room temperature, drying at 110% and heating from 200℃ to 1000℃ at an interval of 100℃ , in terms of water addition, vibration flow value, porosity, dehydration, explosion resistance, cold and hot bending strengths. Differences in dehydrating behavior and the mentioned properties have been revealed and correlated to the binding system.展开更多
Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for ...Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for microsilica-gel bonded no-cement castable systems to control flow properties and setting characteristics.Three mixing and curing temperatures were applied:5℃,20℃and 35℃.The results show that setting-behaviour and mechanical properties strongly vary with the type of dispersant and the curing temperature.However,both setting and strength are less temperature dependent in the castables with Siox X-Zero.Furthermore,the drying and firing of microsilica-gel bonded NCCs were investigated.Since microsilica-gel bond system contains only a small amount of bound water,the castables can be fired at very high heating rates,once the free water has been removed.展开更多
The properties and microstructure of sol self-clean bonded Al2O3-SiC-C castable in iron runner were studied, and the relation between the amount of sol self- clean binder and the properties of castable were discussed....The properties and microstructure of sol self-clean bonded Al2O3-SiC-C castable in iron runner were studied, and the relation between the amount of sol self- clean binder and the properties of castable were discussed. It is believed that the addition of sol self-clean binder can improve the compressive strength, but has little effect on the bulk density and the apparent porosity, which enable the castable to be applicable in different conditions.展开更多
Low cement (LC) and ultra low cement (ULC) bauxite SiC castables are important and high performance monolithic refractories and they have been widely used in iron making and incinerator linings. In this work, rheol...Low cement (LC) and ultra low cement (ULC) bauxite SiC castables are important and high performance monolithic refractories and they have been widely used in iron making and incinerator linings. In this work, rheological behavior of LC and ULC bauxite based SiC containing castables has been studied, including the effects of SiC content and cement content on rheological properties of the castables. The results show that with an increase of SiC and cement content, rheological properties of the castables deteriorate. On the other hand, moderate amounts of SiC (4%~8%) and of calcium aluminate cement (2%~4%) have very slight influence on rheological properties, (i.e. when the castables are sheared their torque and yield torque only slightly increase with the shearing speed). The rheological characteristics of the castables follow Bingham fluid and always show shear thinning behavior.展开更多
In order to study the effect of the curing temperature on the intermediate temperature properties of calcium aluminate cement bonded corundum castables,the prepared castables were cured at 5,10,25,40 and 50℃,respecti...In order to study the effect of the curing temperature on the intermediate temperature properties of calcium aluminate cement bonded corundum castables,the prepared castables were cured at 5,10,25,40 and 50℃,respectively,dried at 110℃ for 24 h and heat treated at 800 and 1100 ℃,respectively.Then the apparent porosity,the cold modulus of rupture and the cold crushing strength were measured.The phase composition of castable matrix specimens treated under the same conditions and the influence of the curing temperature on the intermediate temperature strength of the castables were also analyzed.The results show that with the increase of the curing temperature,the hydration degree of calcium aluminate cement increases,which promotes the uniform distribution of hydration products with AI203 after decomposition,thus enhancing the intermediate temperature strength of castables.展开更多
The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano ca...The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.展开更多
A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and...A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.展开更多
CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi-...CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi- crosilica can be introduced to counterbalance the expan- sion generated by spinel formation. In this paper, the of microsilica dosage on properties of eastables was evaluated. Expansion, expressed by the permanent linear change (PLC), is highly dependent on the dosage of microsilica. Unexpected expansion occurs when the dos- age of microsilica is too low due to dominant effect of spinel and CA6 formation. Too high dosage results in sintering shrinkage, which is related to amount of liquid phase generated by microsilica addition. In addition, HMOR declines dramatically with increasing microsilica dosage. Considering the balance between expansion con- trol and hot property retention, 1.0 mass% of microsili- ca is recommended for the castable containing 4 mass% of magnesia.展开更多
文摘In order to improve the service performance of Al_(2)O_(3)-SiC-C castables,a novel Si-N-O composite micropowder was synthesized by the chemical combustion method.Using brown corundum,sintered alumina,silicon carbide,activeα-Al_(2)O_(3)micropowder,SiO_(2)micropowder,calcium aluminate cement,Si powder and spherical asphalt as the raw materials,adding additive of Si-N-O composite micropowder,Al_(2)O_(3)-SiC-Si_(3)N_(4)/Si_(2)N_(2)O-C castables were prepared.The effects of the Si-N-O composite micropowder addition on the mechanical properties and oxidation resistance of the castables were investigated,and the intrinsic mechanism of strengthening and antioxidation caused by this novel additive was discussed.Experimental results show the introduction of Si-N-O composite micropowder leads to significant improvement in the cold strength,oxidation resistance,thermal shock resistance and hot modulus of rupture of the Al_(2)O_(3)-SiC-C castables.When the Si-N-O composite micropowder addition is approximately 3 mass%,the castable possesses the best comprehensive performance.
基金National Natural Science Foundation of China(52472303 and 52304356).
文摘High-performance alumina-magnesia castables were developed with the addition of nano-CacO_(3) and nano-hydromagnesite.To further understand their dynamic failure mechanism,the quantitative investigation via the employment of the Split-Hopkinson pressure bar(SHPB)method was adopted to test the dynamic failure behavior of alumina-magnesia castables under various impact velocities.The results demonstrate that the greater the impact velocity,the more intense the sample damage.The dynamic compressive stress,the ultimate strain,and the strain energy of all samples display a strain rate hardening effect,and this phenomenon is more conspicuous in the samples incorporating nano-additives.The nano-additives show a positive influence on the dynamic mechanical properties of the castables.
基金Key Project of the National Natural Science Foundation of China(Grant No.U21A2058)China Postdoctoral Science Foundation(2023M740971)State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology,G202209).
文摘The penetration of ladle slag into refractory linings is an essential process in service,and the mechanical properties of the refractory castables are affected by the location and content of slag in the refractory castables.In this work,ladle slag was added into Al_(2)O_(3)-Mgo refractory castables and its influence on the microstructure evolution,mechanical properties and thermal shock resistance of the castables was investigated.The phase composition and contents of the castables during the corrosion process were calculated by FactSage TM(6.2)and studied.The results indicate that the residual strength decreases as the ladle slag addition increases from 0 to 6 mass%.While the hot modulus of rupture of the castable with 6%ladle slag significantly decreases by approximately 80%compared with the one without ladle slag.The elastic modulus and CMOR of the castables decrease with slag-adding,which leads to the increase of liquid phase contents inside the samples.
基金support provided by the National Natural Science Foundation of China(U21A20317).
文摘The low thermal conductivity and light mass of castables for tundish permanent linings are crucial for minimizing the heat loss of molten steel.In consideration of the low bulk density and thermal conductivity of pearlescent sand,the thermal insulation performance of castables was attempted to be improved by adding pearlescent sand.Pearlescent sand was modified to prevent the strength of its porous structure from deteriorating.The modification mechanism of pearlescent sand and the effect of pearlescent sand on the performance of bauxite castables were studied.The results suggested that the addition of the modified pearlescent sand significantly raised the apparent porosity and decreased the bulk density of bauxite castable.At 1000℃,the bulk density of more than 60%of the modified pearlescent sand-bauxite castable was only 2.03 g/cm^(3).The mechanical properties and thermal shock resistance of the modified pearlescent sand-bauxite castable were inferior to those of conventional bauxite castable but were adequate to meet the use conditions of casta-bles for tundish permanent linings.At high temperatures of 200-800℃,the thermal conductivity of more than 60%of the modified pearlescent sand-bauxite castable was smaller than that of conventional bauxite castable.The addition of the modified pearlescent sand can greatly reduce the thermal conductivity and bulk density of bauxite castable.
基金supported by the National Natural Science Foundation of China(52002295 and 52172023).
文摘Ferrotitanium slag(FS)is a waste slag produced during the smelting of ferrotitanium alloys by thermite reduction.Its alumina content is high and can be used as alumina raw material.Iron runner castables containing different amounts of FS were prepared and characterized.The results show that the introduction of FS is beneficial to the sintering of the castables sample.When the FS concentration is 11.2 wt.%,the aggregate and matrix of the castables sample have a good combination,and the mechanical strength of the Al_(2)O_(3)–SiC–C castable reaches a maximum at room temperature.However,excessive introduction of FS generates a large amount of anorthite phase,which reduces the mechanical strength of the Al_(2)O_(3)–SiC–C castable at room temperature.In addition,the high-melting phase CaTiO_(3)is formed in FS,which has good mechanical properties.Meanwhile,the cracks of FS are reduced,and the combination between phases is closer,thus significantly improving the hot modulus of rupture of the castable.When the FS concentration is not above 33.6 wt.%,the castables show good slag resistance.The TiO_(2)in FS is transformed into TiC by carbothermal reaction,which is enriched at the boundary and prevents further reaction of the slag.
文摘Cement-free castables have attracted significant attention due to their superior thermal-mechanical properties and rapid dry-out in comparison to cement-bonded refractory castables.However,drying industrial-scale specimens can pose more challenges than lab-scale samples.In this study,the dry-out behavior and explosion resistance of microsilica-gel bonded nocement castables(NCCs)were investigated on both lab-and industrial-scale specimens,employing various drying agents.First,the fast dry-out mechanism was assessed using thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),and scanning electron microscopy(SEM)on lab-scale small samples.Then,the drying behavior of industrial-scale large samples(300 mm×300 mm×300 mm cubes,approximately 80 kg)was studied using a unique macro-thermo-balance(macro-TGA).The results showed that EMSIL-DRY^(®)reduced the temperature level for maximum dewatering rate and effectively prevented explosions during heat-up,compared to other polymer fibres.The use of a specialty drying agent(EMSIL-DRY^(®))significantly improved the explosion resistance,as demonstrated by the production of a perfect 400 kg block fired to 850℃at a rate of 50℃·h^(-1).This research contributes to the understanding and application of cement-free castables in industrial settings.
基金the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)-Finance Code 001.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP(grant number:2021/00251-0).Finally,the authors are also greatly thankful for FIRE support to carry out this work.
文摘Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some circumstances resistance to erosion from abrasive particles.Given the large processing output of the heavy industries such as the cement and steel ones which both require high temperature processes,the refractories structures span various meters and weight of several tons.As the water removal stage of hydraulic bonded castables in industrial sites takes hours(10-60 h)due to the risk of explosive spalling,efforts to mitigate it are commonly studied.This has provided theoretical understanding of the general aspects of drying and important tools,such as the thermogravimetry analysis(TGA),for the design of refractory compositions with higher explosive spalling resistance.However,the optimization of this process is still far from the industrial reality especially because the actual linings that require the drying are orders of magnitude larger than the samples considered in the laboratory tests.Therefore,this study proposed the analysis of the sample volume effect on the water removal dynamics through TGA of high alumina castables with calcium aluminate cement.Conventionalφ5 cm×5 cm cylindrical samples were assessed in a laboratory scale equipment whereas macro TGA were carried out considering 20 cm×20 cm×20 cm and 30 cm×30 cm×30 cm cubic samples.Additionally,the effect of polymeric fibers was also considered.It was found out that the different thermal gradients within the macro TGA samples resulted in an inflection on the sample’s heating rate and that the mass loss was affected by the volume considered,especially for the composition without additives.These findings highlight the requirement of carefully taking into consideration the different dimensional sizes and thermal gradients in the samples when analyzing and interpreting the laboratory studies,and especially when trying to extrapolate such results to the industrial reality.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
文摘To maintain the volume stability of lightweight magnesia-silica castables during heating,lightweight spherical forsterite aggregates(8-5,5-3,3-1 and 1-0 mm),pre-synthesized forsterite fine powder(≤0.074 and≤0.044 mm),natural silica powder(≤0.074 mm),middle grade magnesia fine powder(≤0.074 and≤0.044 mm)and silica fume were used as the raw materials to prepare lightweight magnesia-silica castables,and the magnesia fine powder and natural silica powder were gradually replaced by pre-synthesized forsterite fine powder(10%,20%,30%and 40%,by mass).The properties of the castables were tested and the microstructure was analyzed.The influence of the pre-synthesized forsterite fine powder addition on their properties was researched.The results show that:with the increase of the pre-synthesized forsterite fine powder addition in the matrix,the workability of the castables is almost the same.After being heated at 1450℃for 3 h,the bulk density of the castables increases,the apparent porosity decreases,the permanent linear change changes from expansion to shrinkage,the cold strengths increase firstly and then decrease,and the thermal conductivity at different temperatures increases.Generally,the optimal pre-synthesized forsterite fine powder addition is 20%.
基金The authors gratefully acknowledge the support from National Natural Science Foundation of China(No.U1860205).
文摘The microporous magnesia refractory shows a promising application prospect as tundish lining due to excellent thermal insulation and slag resistance.The effect of interaction between microporous magnesia castable and 38CrMoAl steel containing 0.876 wt.%Al on the cleanliness of 38CrMoAl steel was studied and compared with that of fused magnesia castable.The results show that the micropores in the microporous magnesia castable can promote the formation of dense and continuous MgO-Al_(2)O_(3)layer,which can inhibit the further pollution of molten steel by refractories,whereas the MgO-Al_(2)O_(3)layer formed in test of fused magnesia castable is not continuous.After 30 min holding,the total oxygen content in the steel samples for the test of microporous magnesia castable is only 42.2%of that for the test of fused magnesia castable.The inclusions in the steel samples for the test of microporous magnesia castable are also less than those for the test of fused magnesia castable.It shows that microporous magnesia castable is a promising tundish refractory for the preparation of clean high-Al steel.
文摘To enhance the serdice life of magnesia based slag dam, composite slag dam was designed to be cast with alumina magnesia castables in slag line and magnesia castables in molten steel zone. Workability of the magnesia castables for the slag dam was improved and a suitable vibration shaping method was adopted to combine it with alumina magnesia castables. The result shows: (1) workability and setting performance of magtwsia castables can be improved to match with alumina magnesia castables by adjusting setting retarder and water reducing agent, and adding proper silica fume ; (2) composite slag dam cart be prepared with alumina m,agnesia castables and the improved magnesia castables, whether by up - down composite method or right - left composite method; in order to get full vibration arrd make interface .fluctuation have proper amplitude, the vibration time oJ the two methods after two different castables contact with each other is 3 and 2.5 minutes, respectively; (3)the result of the on-site test proves that the design aims for reducing pollution to hot metal and improving corrosion resistance have been achieved.
文摘In order to prolong the working time of calcined flint clay-bauxite castables during construction at high temperature,boric acid was added into the castables. The effect of boric acid on working time and curing cold crushing strength of the castables at 25 ℃ and 35 ℃ were investigated. After 24 h curing in mould and another 24 h curing at 110 ℃ after demoulding,the specimens were heat treated at 1 000 ℃,1 300 ℃,and 1 500 ℃ for 3 h,respectively. The permanent linear change,bulk density,modulus of rupture,and cold crushing strength were determined. The result shows that there is no need to add boric acid when calcined flint clay-bauxite castables works at 25 ℃; when calcined flint clay-bauxite castables works at 35 ℃,boric acid can increase the working time of the castables,but decrease the curing cold crushing strength a little. Adding boric acid into calcined flint clay-bauxite castables doesn't worsen performance of the castables.
文摘Thermal behavior and physical properties of castables during curing and drying-out are associated with their binding system. In this work, five alumina based ( Al2O3 〉 87% ) castables with different combinations of binding materials, i. e. , ( 1 ) CA cement (CA) + Reactive alumina ( RA ) + H2O ; ( 2 ) high level addi- tion of CA + Microsilica (MS) + H2O ; ( 3 ) low level addition of CA + MS + H2O ; (4) MS + Hydratable alumina + H20 and ( 5 ) MS + Magnesia + H2O, respectively, have been investigated on the flowability and thermal behavior during curing at room temperature, drying at 110% and heating from 200℃ to 1000℃ at an interval of 100℃ , in terms of water addition, vibration flow value, porosity, dehydration, explosion resistance, cold and hot bending strengths. Differences in dehydrating behavior and the mentioned properties have been revealed and correlated to the binding system.
文摘Microsilica-gel bonded bauxite based no-cement refractory castables(NCCs)have been produced using two readily available dispersants.These NCCs were compared to NCC with Siox X-Zero,a purposely-developed product for microsilica-gel bonded no-cement castable systems to control flow properties and setting characteristics.Three mixing and curing temperatures were applied:5℃,20℃and 35℃.The results show that setting-behaviour and mechanical properties strongly vary with the type of dispersant and the curing temperature.However,both setting and strength are less temperature dependent in the castables with Siox X-Zero.Furthermore,the drying and firing of microsilica-gel bonded NCCs were investigated.Since microsilica-gel bond system contains only a small amount of bound water,the castables can be fired at very high heating rates,once the free water has been removed.
文摘The properties and microstructure of sol self-clean bonded Al2O3-SiC-C castable in iron runner were studied, and the relation between the amount of sol self- clean binder and the properties of castable were discussed. It is believed that the addition of sol self-clean binder can improve the compressive strength, but has little effect on the bulk density and the apparent porosity, which enable the castable to be applicable in different conditions.
文摘Low cement (LC) and ultra low cement (ULC) bauxite SiC castables are important and high performance monolithic refractories and they have been widely used in iron making and incinerator linings. In this work, rheological behavior of LC and ULC bauxite based SiC containing castables has been studied, including the effects of SiC content and cement content on rheological properties of the castables. The results show that with an increase of SiC and cement content, rheological properties of the castables deteriorate. On the other hand, moderate amounts of SiC (4%~8%) and of calcium aluminate cement (2%~4%) have very slight influence on rheological properties, (i.e. when the castables are sheared their torque and yield torque only slightly increase with the shearing speed). The rheological characteristics of the castables follow Bingham fluid and always show shear thinning behavior.
基金The authors appreciate the financial support from National Natural Science Foundation of China(No.5157244,U1604252 and 5167225).
文摘In order to study the effect of the curing temperature on the intermediate temperature properties of calcium aluminate cement bonded corundum castables,the prepared castables were cured at 5,10,25,40 and 50℃,respectively,dried at 110℃ for 24 h and heat treated at 800 and 1100 ℃,respectively.Then the apparent porosity,the cold modulus of rupture and the cold crushing strength were measured.The phase composition of castable matrix specimens treated under the same conditions and the influence of the curing temperature on the intermediate temperature strength of the castables were also analyzed.The results show that with the increase of the curing temperature,the hydration degree of calcium aluminate cement increases,which promotes the uniform distribution of hydration products with AI203 after decomposition,thus enhancing the intermediate temperature strength of castables.
文摘The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.
文摘A series of corundum based castables with 0,2%,4%,6%,and 8% α-Al2O3 micropowders were prepared using tabular alumina aggregates (6-3,3-1 and ≤1 mm) and fines (≤0.088 and ≤0.045 mm),calcium aluminate cement,and α-Al2O3 micropowders (d50=1.754 μm) as starting materials. Cold mechanical strength and pore size distribution of the castables specimens after heat treatment at 110,1 100 and 1 500 ℃ were tested,respectively. The quantitative relationship between strength and apparent porosity,and that between strength and median pore diameter were verified by Atzeni equation. The correlation between interval of pore size and mechanical strength of specimens was also studied by means of gray relational theory. The results show that:(1) the pore size distribution of castables is strongly influenced by both micropowders filling and matrix sintering; the addition of micropowders decreases median pore diameter while the sintering process increases it; (2) when adding a constant correction term,Atzeni equation can substantially describe the quantitative relationship between median pore diameter and strength of castables specimens after heat treatment at the same temperature; the significant differences of the gray relational degree between the interval of pore size and castables strength are characterized; it is also found that for the same interval of pore size,the gray relational degree isaffected by the heat treatment temperature; the pore size interval 〈0.5 μm has the highest gray relational degree with the strength at 110-1 500 ℃.
文摘CMA72 bonded Al2 O3 - MgO castable is promising for application of steel ladle wall, because of unique combination of thermo-mechanical properties, slag corro- sion resistance and cost benefit. In these castables, mi- crosilica can be introduced to counterbalance the expan- sion generated by spinel formation. In this paper, the of microsilica dosage on properties of eastables was evaluated. Expansion, expressed by the permanent linear change (PLC), is highly dependent on the dosage of microsilica. Unexpected expansion occurs when the dos- age of microsilica is too low due to dominant effect of spinel and CA6 formation. Too high dosage results in sintering shrinkage, which is related to amount of liquid phase generated by microsilica addition. In addition, HMOR declines dramatically with increasing microsilica dosage. Considering the balance between expansion con- trol and hot property retention, 1.0 mass% of microsili- ca is recommended for the castable containing 4 mass% of magnesia.