In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less...In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less understood.In order to systematically evaluate and clarify this damage process for different types of drilling fluid contamination,this research uses a high-temperature drilling fluid damage device to simulate the damage caused to the casing/drilling tools by various drilling fluid under a field thermal gradient.The results show that the drilling fluid residues are mainly solid-phase particles and organic components.The degree of casing/tool damage decreases with an increase in bottom hole temperature,and the casing/tool is least damaged within a temperature range of 150–180°C.Moreover,the surface of the casing/tool damaged by different types of drilling fluid shows different roughness,and the wettability of drilling fluid on the casing/tool surface increases with an increase in the degree of roughness.Oil-based drilling fluid have the strongest adhesion contamination on casing/drilling tools.In contrast,polysulfonated potassium drilling fluid and super-micro drilling fluid have the most potent erosion damage on casing/drilling tools.By analyzing the damage mechanism,it was established that the damage was mainly dominated by the abrasive wearing from solid-phase particles in concert with corrosion ions in drilling fluid,with solids producing many abrasion marks and corrosive ions causing a large number of pits.Clarifying drilling fluid's contamination and damage mechanism is significant in guiding the wellbore cleaning process and cutting associated costs.展开更多
Hydraulic fracturing-induced casing deformation and fault activation have greatly hinde red the safe and efficient development of shale oil and gas resources.In this study,statistical analysis,physical tests,and numer...Hydraulic fracturing-induced casing deformation and fault activation have greatly hinde red the safe and efficient development of shale oil and gas resources.In this study,statistical analysis,physical tests,and numerical simulation methods are used to comprehensively analyze hydraulic fracturing-induced fault activation and casing deformation processes.This study is based on the Longmaxi Formation of LZ block,a deep shale gas reservoir in the southwest Sichuan Basin(China),as a geological background.A large amount of field data on fracturing from the LZ Block is counted,and the main influencing factors are analyzed.The main factors of hydraulic fracturing-induced fault slip are(from strong to weak)parameters related to fluid injection volume,parameters related to segments and clusters,and parameters related to injection rate.Combined with physical experiments and numerical simulations,the fault activation law during fracturing has been studied.The degree of casing deformation and fault slip are linearly correlated.For hydraulic fractures to cross faults is very difficult,fault activation and casing deformation can only be mitigated as much as possible.We find that the number of clusters per segment and the injection rate are negatively correlated with the fault slip distance.Reducing the fluid injection volume can mitigate the fault slip distance.Therefore,low injection rates,low fluid volumes,and more clusters per segment are recommended for fracturing in high-risk segments.It is important to note that the scale and risk of fault activation induced by well-factory fracturing is much higher compared to single-well fracturing.In situations with extremely high risk,the injection volume should preferably not exceed 800 m^(3) to minimize the risk of geological and casing deformation.展开更多
Casing damage resulting from sand production in unconsolidated sandstone reservoirs can significantly impact the average production of oil wells.However,the prediction task remains challenging due to the complex damag...Casing damage resulting from sand production in unconsolidated sandstone reservoirs can significantly impact the average production of oil wells.However,the prediction task remains challenging due to the complex damage mechanism caused by sand production.This paper presents an innovative approach that combines feature selection(FS)with boosting algorithms to accurately predict casing damage in unconsolidated sandstone reservoirs.A novel TriScore FS technique is developed,combining mRMR,Random Forest,and F-test.The approach integrates three distinct feature selection approaches—TriScore,wrapper,and hybrid TriScore-wrapper and four interpretable Boosting models(AdaBoost,XGBoost,LightGBM,CatBoost).Moreover,shapley additive explanations(SHAP)was used to identify the most significant features across engineering,geological,and production features.The CatBoost model,using the Hybrid TriScore-rapper G_(1)G_(2)FS method,showed exceptional performance in analyzing data from the Gangxi Oilfield.It achieved the highestaccuracy(95.5%)and recall rate(89.7%)compared to other tested models.Casing service time,casing wall thickness,and perforation density were selected as the top three most important features.This framework enhances predictive robustness and is an effective tool for policymakers and energy analysts,confirming its capability to deliver reliable casing damage forecasts.展开更多
As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminat...As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminated shell element is used to establish the finite element model(FEM)of a flexibly coated casing system.Using the shell element,the blade is modeled,and the surface stress of the blade is calculated.The stress-solving method of the blade is validated through comparisons with the measured time-domain waveform of the stress.Then,a dynamic model of a blade-flexibly coated casing system with rubbing is proposed,accounting for the time-varying mass and stiffness of the casing caused by coating wear.The effects of the proposed flexible casing model are compared with those of a rigid casing model,and the stress changes induced by rubbing are investigated.The results show that the natural characteristics of the coated casing decrease due to the coating wear.The flexibly coated casing model is found to be more suitable for studying casing vibration.Additionally,the stress changes caused by rubbing are slight,and the change in the stress maximum is approximately 5%under the influence of the abrasive coating.展开更多
Milling bridge plugs in shale gas wells with severe casing deformation often leads to the accumulation of cuttings,increasing the risk of stuck drill bits.Friction in the wellbore further complicates tool deployment i...Milling bridge plugs in shale gas wells with severe casing deformation often leads to the accumulation of cuttings,increasing the risk of stuck drill bits.Friction in the wellbore further complicates tool deployment into the horizontal section,posing challenges to efficient plug drilling and achieving wellbore access to the target layer.This paper integrates the theory of positive displacement motors and models their actual working characteristics to study the milling of bridge plugs in severely deformed horizontal wells.It examines the effects of coiled tubing diameter and wall thickness on the bending load of horizontal sections and discusses key technical requirements,including the timing of plug drilling,extending the run in the horizontal section,parameter control,and real-time field analysis.Field practices have shown that after casing deformation occurs,priority should be given to drilling out the bridge plugs below the point of deformation.The primary factors contributing to stuck drills in deformed wells include smaller mill shoe sizes and larger cuttings sizes.Short well-washing cycles and targeted cuttings removal can effectively reduce sticking risks.If sticking occurs,high-tonnage pulling should be avoided.Instead,releasing the stick through up-anddown string motion,combined with high-volume nozzle spraying and annulus pumping,is recommended.The selection of coiled tubing should consider diameter,wall thickness,and steel grade to handle complex situations.Larger diameters,thicker walls,and low-frequency,multi-head hydraulic oscillators are more effective for unlocking horizontal sections.This approach can reduce the risk of drill sticking and solve the problem of horizontal section lock-ups,offering a reliable solution for smooth drilling and efficient production in wells with severe casing deformation.展开更多
An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(...An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(CT)on the stall margin recovery.An operating cycle is proposed based on the hysteresis effect of harmonic flap oscillation of airfoils and parallel compressor theory to explain the pressure characteristic of the fan under twin swirl inlets.Twin swirls are observed to reduce the stall margin of the fan,and the circumferential location where the spike is detected turns to the intersection area of the twin swirl.The IBC CT is proven to extend the stall margin of the fan for 12.7%–22.3%when subjected to inlet swirls with an efficiency loss of around 1%.The IBC CT helps to reduce the size of the operating cycle of the fan by redistributing the blade loading and adding the system damping to dissipate the perturbation energy.展开更多
The “well factory” mode's high-density well placement and multi-stage hydraulic fracturing technology enable efficient development of unconventional oil and gas resources.However,the deployment of platform wells...The “well factory” mode's high-density well placement and multi-stage hydraulic fracturing technology enable efficient development of unconventional oil and gas resources.However,the deployment of platform wells in the “well factory” model results in small wellbore spacing,and the stress disturbances caused by fracturing operations may affect neighboring wells,leading to inter-well interference phenomena that cause casing deformation.This study investigates the issue of inter-well interference causing casing deformation or even failure during multi-stage hydraulic fracturing in the “well factory”model,and predicts high-risk locations for casing failure.A flow-mechanics coupled geomechanical finite element model with retaining geological stratification characteristics was established.Based on the theory of hydraulic fracturing-induced rock fragmentation and fluid action leading to the degradation of rock mechanical properties,the model simulated the four-dimensional evolution of multi-well fracturing areas over time and space,calculating the disturbance in the regional stress field caused by fracturing operations.Subsequently,the stress distribution of multiple well casings at different time points was calculated to predict high-risk locations for casing failure.The research results show that the redistribution of the stress field in the fracturing area increases the stress on the casing.The overlapping fracturing zones between wells cause significant stress interference,greatly increasing the risk of deformation and failure.By analyzing the Mises stress distribution of multi-well casings,high-risk locations for casing failure can be identified.The conclusion is that the key to preventing casing failure in platform wells in the “well factory” model is to optimize the spatial distribution of fracturing zones between wells and reasonably arrange well spacing.The study provides new insights and methods for predicting casing failure in unconventional oil and gas reservoirs and offers references for optimizing drilling and fracturing designs.展开更多
The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manua...The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manual analysis,which is susceptible to human omission,inconsistent results,and time-consumption.In this paper,a method for automated detection of defects is proposed for the ultrasonic Total Focusing Method(TFM)inspection of casing rings based on deep learning.First,the original datasets of defect images are established,and the Mask R-CNN is used to increase the number of defects in a single image.Then,the YOLOX-S-improved lightweight model is proposed,and the feature extraction network is replaced by Faster Net to reduce redundant computations.The Super-Resolution Generative Adversarial Network(SRGAN)and Convolutional Block Attention Module(CBAM)are integrated to improve the identification precision.Finally,a new test dataset is created by ultrasonic TFM inspection of an aeroengine casing ring.The results show that the mean of Average Precision(m AP)of the YOLOX-S-improved model reaches 99.17%,and the corresponding speed reaches 77.6 FPS.This study indicates that the YOLOX-S-improved model performs better than conventional object detection models.And the generalization ability of the proposed model is verified by ultrasonic B-scan images.展开更多
Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal ...Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal characteristics of block formation,fracture development,and casing deformation occurrence,this paper employs an integrated geological—engineering research approach to identify the primary mechanisms governing casing deformation within the block and proposes countermeasures to prevent such deformation.The present research indicates the following findings:(1)The block has undergone multiple phases of tectonic superposition,with fracture development serving as the geological factor causing casing deformation.(2)Fracturing activation constitutes the engineering factor causing casing deformation,with 4 mm of formation slip inducing deformation.(3)The fracture activation risk map shows that Class Ⅰ and Class Ⅱ fractures account for 73.36%of the total recorded in the block.Within the most susceptible Class I risk zone,the critical activation pressure increment for fracturing operations ranges from 13.43 MPa to 13.99 MPa.Based on the distribution of casing failure risk zones identified in the fracture activation risk map,this paper proposes relevant technical countermeasures for preventing casing failure from three perspectives:shale gas well location deployment,drilling techniques,and fracturing techniques.These measures provide robust support for safeguarding the integrity of casing systems within the studied block.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to ene...Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
Squealer tip is widely used in turbines to reduce tip leakage loss.In typical turbine environment,the squealer tip leakage flow is affected by multiple factors such as the relative casing motion and the wide range of ...Squealer tip is widely used in turbines to reduce tip leakage loss.In typical turbine environment,the squealer tip leakage flow is affected by multiple factors such as the relative casing motion and the wide range of variable incidence angles.The development of experimental methods which can accurately model the real turbine environment and influencing factors is of great significance to study the squealer tip leakage flow mechanism.In the present paper,a low-speed turbine cascade test facility which can model the relative casing motion and wide range of variable incidence angles(-25°to 55°)is built.Based on the similarity criteria,a high-low speed similarity transformation method of the turbine cascade is established by considering the thickness of the turbine blade.A combined testing method of Particle Image Velocimetry(PIV)and local pressure measurement is proposed to obtain the complex flow structures within the tip cavity.The results show that the experimental method can successfully model the relative casing motion and the wide range of variable incidence angles.The low-speed cascade obtained by the similarity transformation can model the high-speed flow accurately.The measurement technique developed can obtain the complex flow field and successfully capture the scraping vortex within the squealer tip.展开更多
To study the casing deformation(CD)in shale gas well fracturing caused by natural fracture slip,a fracture face stress model is built based on stress analysis,and a CD prediction model is established based on complex ...To study the casing deformation(CD)in shale gas well fracturing caused by natural fracture slip,a fracture face stress model is built based on stress analysis,and a CD prediction model is established based on complex function to analyze factors affecting wellbore shear stress and CD.(1)The fracture and wellbore approach angles have significant impacts on the wellbore shear stress.In Weiyuan shale gas field,Sichuan Basin,under the common wellbore approach angle of nearly 90°,the wellbore is subjected to large shear stress and high risk of CD at the fracture approach angle range of 20° to 55° or its supplementary angle range.(2)When the fracture is partially opened,the wellbore shear stress is positively correlated with the fluid pressure,and negatively correlated with the fracture friction coefficient;when the fracture is fully opened,the wellbore shear stress is positively correlated with the natural fracture area.(3)The lower the elastic modulus and the longer the fracture length,the more serious the CD will be,and the Poisson’s ratio has a weak influence on the CD.The deformation first increases and then decreases with the increase of fracture approach angle,and reaches the maximum when the fracture approach angle is 45°.(4)At a given fracture approach angle,appropriately adjusting the wellbore approach angle can avoid high shear stress acting on wellbore,and reasonable control of the fluid pressure in the fracture can reduce the CD risk.The shear stress acting on casing is usually much greater than the shear strength of casing,so increasing casing strength or cementing quality have limited effect on reducing the risk of CD.Caliper logging data has verified that the CD prediction model is reliable,so the model can be used to establish risk analysis chart and calculate deformation value,to provide a reference for quick CD risk prediction in fracturing design.展开更多
There has been lack of work efforts on how to optimize cementing and completing parameters in order to prevent casing failure induced by formation slippage in pertroleum industry scope.Once the weak plane fails,the fo...There has been lack of work efforts on how to optimize cementing and completing parameters in order to prevent casing failure induced by formation slippage in pertroleum industry scope.Once the weak plane fails,the formation will become easily undertaken slippage across a large area along its interface.The plenty of horizontal planes of weakness in reservoir formations,as reported for a number of oilfields,can easily undertaken slippage once it fails.To address the problem,three-dimensional finite element models were established by taking into considerations the elastoplastic mechanical characteristics of both the casing and the near-wellbore rock.Two types of casing impairment scenarios were considered:Casing collapse(that causes tubing stuck in the well)and complete casing shear-off.In this study,the critical slip displacement of casing shear damage under both cemented and un-cemented conditions was calculated,and the critical displacement of casing with various wall thicknesses and steel grades was compared.A new cementing practice for the Daqing oilfield was then proposed by optimizing casing parameters according to API standards,and a new research method was also put forward by proposing new casing materials to effectively mitigate casing failure caused by formation slippage for the future.Modeling results indicate that the stress and deformation associated with casing in the un-cemented condition is more diffused and the critical slippage displacement is larger than that in the cemented condition.Therefore,the un-cemented condition is more effective in preventing casing shear failure and easier for casing repair,for the case of casing damage caused by formation shear slippage.Casing elongation is the key parameter of casing shear failure in the un-cemented condition.Lower grade casing exhibits a larger critical slippage displacement because of its higher elongation capacity under stress.Casing with lower grade and smaller thickness provides more advantages in preventing casing damage in formations abundant with horizontal weak layers.If the elongation of casing can be largely improved,the critical displacement value can be increased by 21.40%.Higher grade and thicker casing is adapted for mitigate casing failure caused by formation slippage.展开更多
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre...In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.展开更多
Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate r...Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate rubbing responses of unbalanced rotor-bladed disk-casing system are studied under different operational speeds.In addition,influences of both plastic deformation of blade and casing failure are analyzed.The results show that there exist some multiple even fractional frequencies in the transient and steady vibration responses of unbalanced rotor.Besides,one nodal diameter vibration of bladed disk coupling with the lateral vibration of the shaft as well as the first order bending vibration of blade can be excited under low operational speed,while the first order bending vibration of blade coupling with the lateral vibration of disk-shaft is easily excited under high operational speed.During rubbing process,three distinct contact states can be observed:broken blade-casing contact,broken blade-blade component-casing contact and broken blade-casing contact/blade component-casing contact/blade selfcontact.It is worth noting that the third contact state is related to the operational speed.With the increase of operational speed,self-contact in the blade may occur.展开更多
Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ...Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.展开更多
Casing deformation affects the implementation of stimulation and development measures of oilfields directly;however, the reshaping forceand torque usually are determined by experience when the deformed casing is repai...Casing deformation affects the implementation of stimulation and development measures of oilfields directly;however, the reshaping forceand torque usually are determined by experience when the deformed casing is repaired with the spinning reshaping technology;if the repairingforce or torque is too large, it will result in the damage of casing and cement sheath as well as sticking accident. So, the collapse experimentswere performed on the YAW-200 pressure testing machine by using one production casing which is often used in the oilfield and then thereshaping test of deformed casing (C110) was performed in turn by using two spinning casing swages of which the diameter is 126 mm and129 mm respectively. The continuous rotator and thrust bearing were used to provide the torque and reshaping force respectively in the repairingprocess. The reshaping force and torque required to reshape the deformed casing, the deformation law and the springback value of deformedcasing were obtained. Test results show that the diameter differential between the two spinning casing swages is reasonable. Furthermore, inorder to ensure the safety and reliability of the implementation of post-production technologies, the mechanical properties of deformed casingbefore and after reshaping were tested. It was found that all the mechanical parameters of the deformed casing after reshaping reduced, whichresulted in the decrease of the strength of the reshaped casing. These research achievements would provide important experimental data inoptimizing the structure and construction parameters of spinning casing swages.展开更多
With the rapid development of shale gas exploration and development in China,casing deformation in shale gas horizontal wells happens frequently,which directly impacts the development efficiency and benefits of shale ...With the rapid development of shale gas exploration and development in China,casing deformation in shale gas horizontal wells happens frequently,which directly impacts the development efficiency and benefits of shale gas.In order to explore casing deformation prediction,prevention and treatment methods,this paper analyzes the geological and engineering causes of casing deformation in shale-gas horizontal wells through laboratory work,such as the casing resistance to internal pressure alternating test,the ground simulation test and systematical casing deformation characteristic analysis of MIT24 caliper logging,and the large-scale physical simulation test and numerical simulation of casing deformation.Then,combined with the generalized shear activity criterion,a new method for evaluating casing deformation risk points and some technical measures for preventing casing deformation were formulated.And the following research results were obtained.First,the deformation characteristics of 119 casing deformation points in 23 wells interpreted by MIT24 caliper logging are consistent with the mechanical behaviors of shear compression deformation test.Second,the large-scale physical simulation test shows that natural fault-fractures slip obviously under the state of strike-slip stress.Third,numerical simulation shows that the compression stress on casing increases with the increase of fault-fracture slip.When the fault-fracture slip is between 7.5 mm and 9.0 mm,the casing reaches the critical yield strength and begins to undergo plastic deformation.The“temporary fracture plugging+long segment and multi-cluster”and other technologies are field tested in 28 wells in Weiyuan area of southern Sichuan Basin.The casing deformation rate decreases from 54%(before this research)to 14.3%,and the segment loss rate decreases from 7.8%to 0,which reveals remarkable achievements in casing deformation treatment.In conclusion,the shear slip of fault and macro fractures(referred to as fault-fracture)is the main cause of casing deformation in shale gas horizontal wells,and some measures(e.g.“temporary fracture plugging+long segment and multi-cluster”,reducing fracturing scale and releasing wellbore pressure properly)shall be taken in advance to reduce the fault-fracture activity before the risk point of casing deformation is fractured,so as to reach the goal of casing deformation prevention.展开更多
基金support and funding from the CNPC Project(2021ZG10)National Natural Science Foundation of China(No.52174047)Sinopec Project(No.P23138).
文摘In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less understood.In order to systematically evaluate and clarify this damage process for different types of drilling fluid contamination,this research uses a high-temperature drilling fluid damage device to simulate the damage caused to the casing/drilling tools by various drilling fluid under a field thermal gradient.The results show that the drilling fluid residues are mainly solid-phase particles and organic components.The degree of casing/tool damage decreases with an increase in bottom hole temperature,and the casing/tool is least damaged within a temperature range of 150–180°C.Moreover,the surface of the casing/tool damaged by different types of drilling fluid shows different roughness,and the wettability of drilling fluid on the casing/tool surface increases with an increase in the degree of roughness.Oil-based drilling fluid have the strongest adhesion contamination on casing/drilling tools.In contrast,polysulfonated potassium drilling fluid and super-micro drilling fluid have the most potent erosion damage on casing/drilling tools.By analyzing the damage mechanism,it was established that the damage was mainly dominated by the abrasive wearing from solid-phase particles in concert with corrosion ions in drilling fluid,with solids producing many abrasion marks and corrosive ions causing a large number of pits.Clarifying drilling fluid's contamination and damage mechanism is significant in guiding the wellbore cleaning process and cutting associated costs.
基金financially supported by the National Natural Science Foundation of China(U24B2035 and 52304070)Postdoctoral Fellowship Program of CPSF(GZC20241889 and 2024M753456)Natural Science Foundation of Hubei Province of China(2024AFD374)。
文摘Hydraulic fracturing-induced casing deformation and fault activation have greatly hinde red the safe and efficient development of shale oil and gas resources.In this study,statistical analysis,physical tests,and numerical simulation methods are used to comprehensively analyze hydraulic fracturing-induced fault activation and casing deformation processes.This study is based on the Longmaxi Formation of LZ block,a deep shale gas reservoir in the southwest Sichuan Basin(China),as a geological background.A large amount of field data on fracturing from the LZ Block is counted,and the main influencing factors are analyzed.The main factors of hydraulic fracturing-induced fault slip are(from strong to weak)parameters related to fluid injection volume,parameters related to segments and clusters,and parameters related to injection rate.Combined with physical experiments and numerical simulations,the fault activation law during fracturing has been studied.The degree of casing deformation and fault slip are linearly correlated.For hydraulic fractures to cross faults is very difficult,fault activation and casing deformation can only be mitigated as much as possible.We find that the number of clusters per segment and the injection rate are negatively correlated with the fault slip distance.Reducing the fluid injection volume can mitigate the fault slip distance.Therefore,low injection rates,low fluid volumes,and more clusters per segment are recommended for fracturing in high-risk segments.It is important to note that the scale and risk of fault activation induced by well-factory fracturing is much higher compared to single-well fracturing.In situations with extremely high risk,the injection volume should preferably not exceed 800 m^(3) to minimize the risk of geological and casing deformation.
基金funded by the National Natural Science Foundation Project(Grant No.52274015)the National Science and Technology Major Project(Grant No.2025ZD1402205)。
文摘Casing damage resulting from sand production in unconsolidated sandstone reservoirs can significantly impact the average production of oil wells.However,the prediction task remains challenging due to the complex damage mechanism caused by sand production.This paper presents an innovative approach that combines feature selection(FS)with boosting algorithms to accurately predict casing damage in unconsolidated sandstone reservoirs.A novel TriScore FS technique is developed,combining mRMR,Random Forest,and F-test.The approach integrates three distinct feature selection approaches—TriScore,wrapper,and hybrid TriScore-wrapper and four interpretable Boosting models(AdaBoost,XGBoost,LightGBM,CatBoost).Moreover,shapley additive explanations(SHAP)was used to identify the most significant features across engineering,geological,and production features.The CatBoost model,using the Hybrid TriScore-rapper G_(1)G_(2)FS method,showed exceptional performance in analyzing data from the Gangxi Oilfield.It achieved the highestaccuracy(95.5%)and recall rate(89.7%)compared to other tested models.Casing service time,casing wall thickness,and perforation density were selected as the top three most important features.This framework enhances predictive robustness and is an effective tool for policymakers and energy analysts,confirming its capability to deliver reliable casing damage forecasts.
基金Project supported by the National Science and Technology Major Project(No.J2022-IV-0005-0022)the Aero Science Foundation of China(No.20230015050001)the Shenyang Science and Technology Plan Project of China(No.24-202-6-01)。
文摘As a common fault of the aero-engine,the blade-casing rubbing(BCR)has the potential to cause catastrophic accidents.In this paper,to investigate the dynamic responses and wear characteristics of the system,the laminated shell element is used to establish the finite element model(FEM)of a flexibly coated casing system.Using the shell element,the blade is modeled,and the surface stress of the blade is calculated.The stress-solving method of the blade is validated through comparisons with the measured time-domain waveform of the stress.Then,a dynamic model of a blade-flexibly coated casing system with rubbing is proposed,accounting for the time-varying mass and stiffness of the casing caused by coating wear.The effects of the proposed flexible casing model are compared with those of a rigid casing model,and the stress changes induced by rubbing are investigated.The results show that the natural characteristics of the coated casing decrease due to the coating wear.The flexibly coated casing model is found to be more suitable for studying casing vibration.Additionally,the stress changes caused by rubbing are slight,and the change in the stress maximum is approximately 5%under the influence of the abrasive coating.
基金supported by Major Technology Promotion Project of CNPC,China(No.2022ZT01)Major Field Test Project of CNPC,China(No.2019F-31-04)CNPC Chuanqing Drilling Engineering Company Science and Technology Special Project,China(No.CQ2024B-11-Z2-4).
文摘Milling bridge plugs in shale gas wells with severe casing deformation often leads to the accumulation of cuttings,increasing the risk of stuck drill bits.Friction in the wellbore further complicates tool deployment into the horizontal section,posing challenges to efficient plug drilling and achieving wellbore access to the target layer.This paper integrates the theory of positive displacement motors and models their actual working characteristics to study the milling of bridge plugs in severely deformed horizontal wells.It examines the effects of coiled tubing diameter and wall thickness on the bending load of horizontal sections and discusses key technical requirements,including the timing of plug drilling,extending the run in the horizontal section,parameter control,and real-time field analysis.Field practices have shown that after casing deformation occurs,priority should be given to drilling out the bridge plugs below the point of deformation.The primary factors contributing to stuck drills in deformed wells include smaller mill shoe sizes and larger cuttings sizes.Short well-washing cycles and targeted cuttings removal can effectively reduce sticking risks.If sticking occurs,high-tonnage pulling should be avoided.Instead,releasing the stick through up-anddown string motion,combined with high-volume nozzle spraying and annulus pumping,is recommended.The selection of coiled tubing should consider diameter,wall thickness,and steel grade to handle complex situations.Larger diameters,thicker walls,and low-frequency,multi-head hydraulic oscillators are more effective for unlocking horizontal sections.This approach can reduce the risk of drill sticking and solve the problem of horizontal section lock-ups,offering a reliable solution for smooth drilling and efficient production in wells with severe casing deformation.
基金supported by the National Natural Science Foundation of China(Nos.52306035 and 52325602)the Science Center for Gas Turbine Project,China(Nos.P2022-A-II-002-001 and P2022-C-II-003-001)+1 种基金the National Science and Technology Major Project,China(Nos.Y2022-II-0002-0005 and Y2022-II-0003-0006)the Key Laboratory of Pre-Research Management Centre,China(No.6142702200101)。
文摘An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(CT)on the stall margin recovery.An operating cycle is proposed based on the hysteresis effect of harmonic flap oscillation of airfoils and parallel compressor theory to explain the pressure characteristic of the fan under twin swirl inlets.Twin swirls are observed to reduce the stall margin of the fan,and the circumferential location where the spike is detected turns to the intersection area of the twin swirl.The IBC CT is proven to extend the stall margin of the fan for 12.7%–22.3%when subjected to inlet swirls with an efficiency loss of around 1%.The IBC CT helps to reduce the size of the operating cycle of the fan by redistributing the blade loading and adding the system damping to dissipate the perturbation energy.
基金supported by the National Natural Science Foundation of China (No.52104008&No.52274042)the Natural Science Foundation of Sichuan,China (No.2024NSFSC0963)。
文摘The “well factory” mode's high-density well placement and multi-stage hydraulic fracturing technology enable efficient development of unconventional oil and gas resources.However,the deployment of platform wells in the “well factory” model results in small wellbore spacing,and the stress disturbances caused by fracturing operations may affect neighboring wells,leading to inter-well interference phenomena that cause casing deformation.This study investigates the issue of inter-well interference causing casing deformation or even failure during multi-stage hydraulic fracturing in the “well factory”model,and predicts high-risk locations for casing failure.A flow-mechanics coupled geomechanical finite element model with retaining geological stratification characteristics was established.Based on the theory of hydraulic fracturing-induced rock fragmentation and fluid action leading to the degradation of rock mechanical properties,the model simulated the four-dimensional evolution of multi-well fracturing areas over time and space,calculating the disturbance in the regional stress field caused by fracturing operations.Subsequently,the stress distribution of multiple well casings at different time points was calculated to predict high-risk locations for casing failure.The research results show that the redistribution of the stress field in the fracturing area increases the stress on the casing.The overlapping fracturing zones between wells cause significant stress interference,greatly increasing the risk of deformation and failure.By analyzing the Mises stress distribution of multi-well casings,high-risk locations for casing failure can be identified.The conclusion is that the key to preventing casing failure in platform wells in the “well factory” model is to optimize the spatial distribution of fracturing zones between wells and reasonably arrange well spacing.The study provides new insights and methods for predicting casing failure in unconventional oil and gas reservoirs and offers references for optimizing drilling and fracturing designs.
基金supported by the Postdoctoral Fellowship Program of CPSF,China(No.GZC20232015)the China Postdoctoral Science Foundation(No.2024M752499)+3 种基金the Postdoctoral Project of Hubei Province,China(No.2024HBBHCXA076)the Wuhan East Lake New Technology Development Zone Open List Project,China(No.2022KJB128)the National Natural Science Foundation of China(No.51875428)the Fundamental Research Funds for the Central Universities,China(No.104972024RSCbs0013)。
文摘The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manual analysis,which is susceptible to human omission,inconsistent results,and time-consumption.In this paper,a method for automated detection of defects is proposed for the ultrasonic Total Focusing Method(TFM)inspection of casing rings based on deep learning.First,the original datasets of defect images are established,and the Mask R-CNN is used to increase the number of defects in a single image.Then,the YOLOX-S-improved lightweight model is proposed,and the feature extraction network is replaced by Faster Net to reduce redundant computations.The Super-Resolution Generative Adversarial Network(SRGAN)and Convolutional Block Attention Module(CBAM)are integrated to improve the identification precision.Finally,a new test dataset is created by ultrasonic TFM inspection of an aeroengine casing ring.The results show that the mean of Average Precision(m AP)of the YOLOX-S-improved model reaches 99.17%,and the corresponding speed reaches 77.6 FPS.This study indicates that the YOLOX-S-improved model performs better than conventional object detection models.And the generalization ability of the proposed model is verified by ultrasonic B-scan images.
文摘Casing deformation is a widespread problem in a certain block of Jiaoshiba Shale Gas Field in Sichuan Basin,China,and it severely limits the development benefits of shale gas in that block.Based on the spatiotemporal characteristics of block formation,fracture development,and casing deformation occurrence,this paper employs an integrated geological—engineering research approach to identify the primary mechanisms governing casing deformation within the block and proposes countermeasures to prevent such deformation.The present research indicates the following findings:(1)The block has undergone multiple phases of tectonic superposition,with fracture development serving as the geological factor causing casing deformation.(2)Fracturing activation constitutes the engineering factor causing casing deformation,with 4 mm of formation slip inducing deformation.(3)The fracture activation risk map shows that Class Ⅰ and Class Ⅱ fractures account for 73.36%of the total recorded in the block.Within the most susceptible Class I risk zone,the critical activation pressure increment for fracturing operations ranges from 13.43 MPa to 13.99 MPa.Based on the distribution of casing failure risk zones identified in the fracture activation risk map,this paper proposes relevant technical countermeasures for preventing casing failure from three perspectives:shale gas well location deployment,drilling techniques,and fracturing techniques.These measures provide robust support for safeguarding the integrity of casing systems within the studied block.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金support from the national projects (Grant No.: 2009ZX05009-005 and 2010CB226703)
文摘Intermediate casings in the build sections are subject to severe wear in extended-reach drilling. This paper presents a new method for predicting the depth of a wear groove on the intermediate casing. According to energy principle and dynamic accumulation of casing wear by tool joints, a model is established to calculate the wear area on the inner wall of the casing. The relationship functions between the wear groove depth and area are obtained based on the geometry relationship between the drillstring and the wear section and the assumption that the casing wear groove is crescent-shaped. The change of casing wear groove depth versus drilling footage under different-sized drillstrings is also discussed. A mechanical model is proposed for predicting casing wear location, which is based on the well trajectory and drillstring movement. The casing wear groove depth of a planned well is predicted with inversion of the casing wear factor from the drilled well and necessarily revised to improve the prediction accuracy for differences between the drilled well and the planned well. The method for predicting casing wear in extended-reach drilling is verified through actual case study. The effect of drillstring size on casing wear should be taken into account in casing wear prediction.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.
基金supported by the National Natural Science Foundation of China(No.51676005)。
文摘Squealer tip is widely used in turbines to reduce tip leakage loss.In typical turbine environment,the squealer tip leakage flow is affected by multiple factors such as the relative casing motion and the wide range of variable incidence angles.The development of experimental methods which can accurately model the real turbine environment and influencing factors is of great significance to study the squealer tip leakage flow mechanism.In the present paper,a low-speed turbine cascade test facility which can model the relative casing motion and wide range of variable incidence angles(-25°to 55°)is built.Based on the similarity criteria,a high-low speed similarity transformation method of the turbine cascade is established by considering the thickness of the turbine blade.A combined testing method of Particle Image Velocimetry(PIV)and local pressure measurement is proposed to obtain the complex flow structures within the tip cavity.The results show that the experimental method can successfully model the relative casing motion and the wide range of variable incidence angles.The low-speed cascade obtained by the similarity transformation can model the high-speed flow accurately.The measurement technique developed can obtain the complex flow field and successfully capture the scraping vortex within the squealer tip.
基金Supported by National Natural Science Foundation of China(51904258,51874250)Project of Science and Technology of Shale Gas Exploration&Development of CCDC(2019-JS-941)National Major Project of Science and Technology(2016ZX05048-004-006)。
文摘To study the casing deformation(CD)in shale gas well fracturing caused by natural fracture slip,a fracture face stress model is built based on stress analysis,and a CD prediction model is established based on complex function to analyze factors affecting wellbore shear stress and CD.(1)The fracture and wellbore approach angles have significant impacts on the wellbore shear stress.In Weiyuan shale gas field,Sichuan Basin,under the common wellbore approach angle of nearly 90°,the wellbore is subjected to large shear stress and high risk of CD at the fracture approach angle range of 20° to 55° or its supplementary angle range.(2)When the fracture is partially opened,the wellbore shear stress is positively correlated with the fluid pressure,and negatively correlated with the fracture friction coefficient;when the fracture is fully opened,the wellbore shear stress is positively correlated with the natural fracture area.(3)The lower the elastic modulus and the longer the fracture length,the more serious the CD will be,and the Poisson’s ratio has a weak influence on the CD.The deformation first increases and then decreases with the increase of fracture approach angle,and reaches the maximum when the fracture approach angle is 45°.(4)At a given fracture approach angle,appropriately adjusting the wellbore approach angle can avoid high shear stress acting on wellbore,and reasonable control of the fluid pressure in the fracture can reduce the CD risk.The shear stress acting on casing is usually much greater than the shear strength of casing,so increasing casing strength or cementing quality have limited effect on reducing the risk of CD.Caliper logging data has verified that the CD prediction model is reliable,so the model can be used to establish risk analysis chart and calculate deformation value,to provide a reference for quick CD risk prediction in fracturing design.
基金This work was financially supported by the Science Foundation Project in Heilongjiang Province of China(No.QC2018047).
文摘There has been lack of work efforts on how to optimize cementing and completing parameters in order to prevent casing failure induced by formation slippage in pertroleum industry scope.Once the weak plane fails,the formation will become easily undertaken slippage across a large area along its interface.The plenty of horizontal planes of weakness in reservoir formations,as reported for a number of oilfields,can easily undertaken slippage once it fails.To address the problem,three-dimensional finite element models were established by taking into considerations the elastoplastic mechanical characteristics of both the casing and the near-wellbore rock.Two types of casing impairment scenarios were considered:Casing collapse(that causes tubing stuck in the well)and complete casing shear-off.In this study,the critical slip displacement of casing shear damage under both cemented and un-cemented conditions was calculated,and the critical displacement of casing with various wall thicknesses and steel grades was compared.A new cementing practice for the Daqing oilfield was then proposed by optimizing casing parameters according to API standards,and a new research method was also put forward by proposing new casing materials to effectively mitigate casing failure caused by formation slippage for the future.Modeling results indicate that the stress and deformation associated with casing in the un-cemented condition is more diffused and the critical slippage displacement is larger than that in the cemented condition.Therefore,the un-cemented condition is more effective in preventing casing shear failure and easier for casing repair,for the case of casing damage caused by formation shear slippage.Casing elongation is the key parameter of casing shear failure in the un-cemented condition.Lower grade casing exhibits a larger critical slippage displacement because of its higher elongation capacity under stress.Casing with lower grade and smaller thickness provides more advantages in preventing casing damage in formations abundant with horizontal weak layers.If the elongation of casing can be largely improved,the critical displacement value can be increased by 21.40%.Higher grade and thicker casing is adapted for mitigate casing failure caused by formation slippage.
基金supported by the Hydrogeology Survey And Comprehensive Evaluation of Large Basin and Deep Typical Southeast Coastal Region(No.12120114025101)
文摘In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process.
基金supported by the National Natural Science Foundation of China(No.11772089)the Fundamental Research Funds for the Central Universities (Nos. N160312001and N160313004)the Research Project of State Key Laboratory of Mechanical System and Vibration(No.MSV201707)
文摘Considering the elastic supports,the finite element model of rotor-bladed disk-casing system is established using commercial software ANSYS/LS-DYNA.Assuming that broken blade is released from the disk,the complicate rubbing responses of unbalanced rotor-bladed disk-casing system are studied under different operational speeds.In addition,influences of both plastic deformation of blade and casing failure are analyzed.The results show that there exist some multiple even fractional frequencies in the transient and steady vibration responses of unbalanced rotor.Besides,one nodal diameter vibration of bladed disk coupling with the lateral vibration of the shaft as well as the first order bending vibration of blade can be excited under low operational speed,while the first order bending vibration of blade coupling with the lateral vibration of disk-shaft is easily excited under high operational speed.During rubbing process,three distinct contact states can be observed:broken blade-casing contact,broken blade-blade component-casing contact and broken blade-casing contact/blade component-casing contact/blade selfcontact.It is worth noting that the third contact state is related to the operational speed.With the increase of operational speed,self-contact in the blade may occur.
基金financially supported by the National Natural Science Foundation of China (51674088)Natural Science Foundation of Heilongjiang Province of China (LH 2021E011)。
文摘Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.
文摘Casing deformation affects the implementation of stimulation and development measures of oilfields directly;however, the reshaping forceand torque usually are determined by experience when the deformed casing is repaired with the spinning reshaping technology;if the repairingforce or torque is too large, it will result in the damage of casing and cement sheath as well as sticking accident. So, the collapse experimentswere performed on the YAW-200 pressure testing machine by using one production casing which is often used in the oilfield and then thereshaping test of deformed casing (C110) was performed in turn by using two spinning casing swages of which the diameter is 126 mm and129 mm respectively. The continuous rotator and thrust bearing were used to provide the torque and reshaping force respectively in the repairingprocess. The reshaping force and torque required to reshape the deformed casing, the deformation law and the springback value of deformedcasing were obtained. Test results show that the diameter differential between the two spinning casing swages is reasonable. Furthermore, inorder to ensure the safety and reliability of the implementation of post-production technologies, the mechanical properties of deformed casingbefore and after reshaping were tested. It was found that all the mechanical parameters of the deformed casing after reshaping reduced, whichresulted in the decrease of the strength of the reshaped casing. These research achievements would provide important experimental data inoptimizing the structure and construction parameters of spinning casing swages.
基金supported by the Scientific Research and Technology Development Project of CNPC“Research and field test of key technologies for effective exploitation of deep shale gas”(No.2019F-31JT).
文摘With the rapid development of shale gas exploration and development in China,casing deformation in shale gas horizontal wells happens frequently,which directly impacts the development efficiency and benefits of shale gas.In order to explore casing deformation prediction,prevention and treatment methods,this paper analyzes the geological and engineering causes of casing deformation in shale-gas horizontal wells through laboratory work,such as the casing resistance to internal pressure alternating test,the ground simulation test and systematical casing deformation characteristic analysis of MIT24 caliper logging,and the large-scale physical simulation test and numerical simulation of casing deformation.Then,combined with the generalized shear activity criterion,a new method for evaluating casing deformation risk points and some technical measures for preventing casing deformation were formulated.And the following research results were obtained.First,the deformation characteristics of 119 casing deformation points in 23 wells interpreted by MIT24 caliper logging are consistent with the mechanical behaviors of shear compression deformation test.Second,the large-scale physical simulation test shows that natural fault-fractures slip obviously under the state of strike-slip stress.Third,numerical simulation shows that the compression stress on casing increases with the increase of fault-fracture slip.When the fault-fracture slip is between 7.5 mm and 9.0 mm,the casing reaches the critical yield strength and begins to undergo plastic deformation.The“temporary fracture plugging+long segment and multi-cluster”and other technologies are field tested in 28 wells in Weiyuan area of southern Sichuan Basin.The casing deformation rate decreases from 54%(before this research)to 14.3%,and the segment loss rate decreases from 7.8%to 0,which reveals remarkable achievements in casing deformation treatment.In conclusion,the shear slip of fault and macro fractures(referred to as fault-fracture)is the main cause of casing deformation in shale gas horizontal wells,and some measures(e.g.“temporary fracture plugging+long segment and multi-cluster”,reducing fracturing scale and releasing wellbore pressure properly)shall be taken in advance to reduce the fault-fracture activity before the risk point of casing deformation is fractured,so as to reach the goal of casing deformation prevention.