Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy...Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we...Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Cascading failures in infrastructure networks have serious impacts on network function.The limited capacity of net-work nodes provides a necessary condition for cascade failure.However,the network capacity cannot be i...Cascading failures in infrastructure networks have serious impacts on network function.The limited capacity of net-work nodes provides a necessary condition for cascade failure.However,the network capacity cannot be infinite in the real net-work system.Therefore,how to reasonably allocate the limited capacity resources is of great significance.In this article,we put forward a capacity allocation strategy based on community structure against cascading failure.Experimental results indi-cate that the proposed method can reduce the scale of cascade failures with higher capacity utilization compared with Motter-Lai(ML)model.The advantage of our method is more obvious in scale-free network.Furthermore,the experiment shows that the cascade effect is more obvious when the vertex load is ran-domly varying.It is known to all that the growth of network capacity can make the network more resistant to destruction,but in this paper it is found that the contribution rate of unit capacity rises first and then decreases with the growth of net-work capacity cost.展开更多
Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdepende...Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.展开更多
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ...With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in...The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.展开更多
Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network ar...Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.展开更多
In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distributio...In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.展开更多
This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted dependin...This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.展开更多
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free t...In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.展开更多
Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models o...Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.展开更多
Power grid vulnerability is a key issue with large blackouts, causing power disruption for millions of people. The complexity of power grid, together with excessive number of components, makes it difficult to be model...Power grid vulnerability is a key issue with large blackouts, causing power disruption for millions of people. The complexity of power grid, together with excessive number of components, makes it difficult to be modeled. Currently, researchers use complex networks to model and study the performance of power grids. In fact, power grids can be modeled into a complex network by making use of ring network topology, with substations and transmission lines denoted as nodes and edges, respectively. In this paper, three protection schemes are proposed and their effectiveness in protecting the power network under high and low-load attacks is studied. The proposed schemes, namely, Cascaded Load Cut-off (CLC), Cascaded Load Overflow (CLO) and Adaptive-Cascaded Load Overflow (A-CLO), improve the robustness of the power grids, i.e., decrease the value of critical tolerance. Simulation results show that CLC and CLO protection schemes are more effective in improving the robustness of networks than the A-CLO protection scheme. However, the CLC protection scheme is effective only at the expense that certain percentage of the network will have no power supply. Thus, results show that the CLO protection scheme dominates the other protection schemes, CLC and A-CLO, in terms of the robustness of the network, improved with the precise amount of load cut-off determined.展开更多
The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we inves...The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we investigate the cascading fail- ure in multilayer networks with dynamic dependency groups. We construct a model considering the recovery mechanism. In our model, two effects between layers are defined. Under Effect 1, the dependent nodes in other layers will be disabled as long as one node does not belong to the largest connected component in one layer. Under Effect 2, the dependent nodes in other layers will recover when one node belongs to the largest connected component. The theoretical solution of the largest component is deduced and the simulation results verify our theoretical solution. In the simulation, we analyze the influence factors of the network robustness, including the fraction of dependent nodes and the group size, in our model. It shows that increasing the fraction of dependent nodes and the group size will enhance the network robustness under Effect 1. On the contrary, these will reduce the network robustness under Effect 2. Meanwhile, we find that the tightness of the network connection will affect the robustness of networks. Furthermore, setting the average degree of network as 8 is enough to keep the network robust.展开更多
Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and com...Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.展开更多
The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adj...The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data.展开更多
Cascading failure is an important part of the dynamics in complex network.In this paper,we research the cascading failure of Farey network which is scale-free network with fractal properties by data analysis.According...Cascading failure is an important part of the dynamics in complex network.In this paper,we research the cascading failure of Farey network which is scale-free network with fractal properties by data analysis.According to the analyses,we obtain an iterative expression of the failure nodes’number at the certain time step,anther iterative expression of the time which is needed for the network being global collapse,and the sequence of nodes failure in the Farey network.By theoretical derivation,we get an approximate solutions of perturbation threshold R to make the network achieve the global collapse.If the nodes number of the Farey network is lager,simulate results are closer to theoretical value.By the simulation,we obtain the cascading failure process of the Farey network after suffering deliberate attack and random attack.Simulation results show that,the failure nodes of Farey network increase gradually as R raises,until the network is global collapse.Moreover,Farey network shows stronger robustness for random attack.abstract environment.展开更多
基金supported by the National Natural Science Foundation of China(72271242)Hunan Provincial Natural Science Foundation of China for Excellent Young Scholars(2022JJ20046).
文摘Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金supported by the Natural Science Foundation of Hubei Province of China under grant number 2022CFB536the National Natural Science Foundation of China under grant number 62367006the 15th Graduate Education Innovation Fund of Wuhan Institute of Technology under grant number CX2023579.
文摘Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action recognition.In this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping mechanism.This network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution features.DAUNet is composed of three main components.First,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature loss.Second,after upsampling,the network eliminates redundant features,improving the overall efficiency.Finally,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher accuracy.Experimental results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO dataset.Moreover,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
文摘Cascading failures in infrastructure networks have serious impacts on network function.The limited capacity of net-work nodes provides a necessary condition for cascade failure.However,the network capacity cannot be infinite in the real net-work system.Therefore,how to reasonably allocate the limited capacity resources is of great significance.In this article,we put forward a capacity allocation strategy based on community structure against cascading failure.Experimental results indi-cate that the proposed method can reduce the scale of cascade failures with higher capacity utilization compared with Motter-Lai(ML)model.The advantage of our method is more obvious in scale-free network.Furthermore,the experiment shows that the cascade effect is more obvious when the vertex load is ran-domly varying.It is known to all that the growth of network capacity can make the network more resistant to destruction,but in this paper it is found that the contribution rate of unit capacity rises first and then decreases with the growth of net-work capacity cost.
基金the European Research Council under the Grant agreement no.ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE_Integrated Design and Control of Sustainable Communities during Emergencies.
文摘Lifelines are critical infrastructure systems characterized by a high level of interdependency that can lead to cascading failures after any disaster.Many approaches can be used to analyze infrastructural interdependencies,but they are usually not able to describe the sequence of events during emergencies.Therefore,interdependencies need to be modeled also taking into account the time effects.The methodology proposed in this paper is based on a modified version of the Input-output Inoperability Model and returns the probabilities of failure for each node of the system.Lifelines are modeled using graph theory,while perturbations,representing a natural or man-made disaster,are applied to the elements of the network following predetermined rules.The cascading effects among interdependent networks have been simulated using a spatial multilayer approach,while the use of an adjacency tensor allows to consider the temporal dimension and its effects.The method has been tested on a case study based on the 2011 Fukushima Dai-ichi nuclear disaster.Different configurations of the system have been analyzed and their probability of occurrence evaluated.Two models of the nuclear power plant have been developed to evaluate how different spatial scales and levels of detail affect the results.
基金supported by the National Natural Science Foundation of China(60972145)the National Aerospace Science Foundation of China(20140751008)
文摘With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金the National Basic Research Program (973) of China (No. 2004CB217902)the National Natural Science Foundation of China (Nos. 60421002 and 60804045)the Postdoctoral Science Foundation of China (No. 20070421163)
文摘The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.
基金supported by the National Key Technology R&D Program of China under Grant No.2012BAH46B04
文摘Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.
基金Project partly supported by National Basic Research Program of China (Grant No 2006CB705500)National Natural Science Foundation of China (Grant Nos 70631001, 70671008 and 70801005)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No 48033)
文摘In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.
基金Project supported by the National Natural Science Foundation of China(Grant No.30570432)the General Project of Hunan Provincial Educational Department of China(Grant No.07C754)
文摘This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.F2014203239)the Autonomous Research Fund of Young Teacher in Yanshan University(Grant No.14LGB017)Yanshan University Doctoral Foundation,China(Grant No.B867)
文摘In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871046).
文摘Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.
文摘Power grid vulnerability is a key issue with large blackouts, causing power disruption for millions of people. The complexity of power grid, together with excessive number of components, makes it difficult to be modeled. Currently, researchers use complex networks to model and study the performance of power grids. In fact, power grids can be modeled into a complex network by making use of ring network topology, with substations and transmission lines denoted as nodes and edges, respectively. In this paper, three protection schemes are proposed and their effectiveness in protecting the power network under high and low-load attacks is studied. The proposed schemes, namely, Cascaded Load Cut-off (CLC), Cascaded Load Overflow (CLO) and Adaptive-Cascaded Load Overflow (A-CLO), improve the robustness of the power grids, i.e., decrease the value of critical tolerance. Simulation results show that CLC and CLO protection schemes are more effective in improving the robustness of networks than the A-CLO protection scheme. However, the CLC protection scheme is effective only at the expense that certain percentage of the network will have no power supply. Thus, results show that the CLO protection scheme dominates the other protection schemes, CLC and A-CLO, in terms of the robustness of the network, improved with the precise amount of load cut-off determined.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601053)
文摘The cascading failure often occurs in real networks. It is significant to analyze the cascading failure in the complex network research. The dependency relation can change over time. Therefore, in this study, we investigate the cascading fail- ure in multilayer networks with dynamic dependency groups. We construct a model considering the recovery mechanism. In our model, two effects between layers are defined. Under Effect 1, the dependent nodes in other layers will be disabled as long as one node does not belong to the largest connected component in one layer. Under Effect 2, the dependent nodes in other layers will recover when one node belongs to the largest connected component. The theoretical solution of the largest component is deduced and the simulation results verify our theoretical solution. In the simulation, we analyze the influence factors of the network robustness, including the fraction of dependent nodes and the group size, in our model. It shows that increasing the fraction of dependent nodes and the group size will enhance the network robustness under Effect 1. On the contrary, these will reduce the network robustness under Effect 2. Meanwhile, we find that the tightness of the network connection will affect the robustness of networks. Furthermore, setting the average degree of network as 8 is enough to keep the network robust.
基金the National Natural Science Foundation of China(Grant Nos.62203229,61672298,61873326,and 61802155)the Philosophy and Social Sciences Research of Universities in Jiangsu Province(Grant No.2018SJZDI142)+2 种基金the Natural Science Research Projects of Universities in Jiangsu Province(Grant No.20KJB120007)the Jiangsu Natural Science Foundation Youth Fund Project(Grant No.BK20200758)Qing Lan Project and the Science and Technology Project of Market Supervision Administration of Jiangsu Province(Grant No.KJ21125027)。
文摘Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.
基金supported by the National Natural Science Foundation of China(Research on Dynamic Location of Receiving Points and Wave Field Separation Technology Based on Deep Learning in OBN Seismic Exploration,No.42074140)the Sinopec Geophysical Corporation,Project of OBC/OBN Seismic Data Wave Field Characteristics Analysis and Ghost Wave Suppression(No.SGC-202206)。
文摘The use of blended acquisition technology in marine seismic exploration has the advantages of high acquisition efficiency and low exploration costs.However,during acquisition,the primary source may be disturbed by adjacent sources,resulting in blended noise that can adversely affect data processing and interpretation.Therefore,the de-blending method is needed to suppress blended noise and improve the quality of subsequent processing.Conventional de-blending methods,such as denoising and inversion methods,encounter challenges in parameter selection and entail high computational costs.In contrast,deep learning-based de-blending methods demonstrate reduced reliance on manual intervention and provide rapid calculation speeds post-training.In this study,we propose a Uformer network using a nonoverlapping window multihead attention mechanism designed for de-blending blended data in the common shot domain.We add the depthwise convolution to the feedforward network to improve Uformer’s ability to capture local context information.The loss function comprises SSIM and L1 loss.Our test results indicate that the Uformer outperforms convolutional neural networks and traditional denoising methods across various evaluation metrics,thus highlighting the effectiveness and advantages of Uformer in de-blending blended data.
文摘Cascading failure is an important part of the dynamics in complex network.In this paper,we research the cascading failure of Farey network which is scale-free network with fractal properties by data analysis.According to the analyses,we obtain an iterative expression of the failure nodes’number at the certain time step,anther iterative expression of the time which is needed for the network being global collapse,and the sequence of nodes failure in the Farey network.By theoretical derivation,we get an approximate solutions of perturbation threshold R to make the network achieve the global collapse.If the nodes number of the Farey network is lager,simulate results are closer to theoretical value.By the simulation,we obtain the cascading failure process of the Farey network after suffering deliberate attack and random attack.Simulation results show that,the failure nodes of Farey network increase gradually as R raises,until the network is global collapse.Moreover,Farey network shows stronger robustness for random attack.abstract environment.