In this paper, standard and economical cascadic multigrid methods are considered for solving the algebraic systems resulting from the mortar finite element methods. Both cascadic multigrid methods do not need full ell...In this paper, standard and economical cascadic multigrid methods are considered for solving the algebraic systems resulting from the mortar finite element methods. Both cascadic multigrid methods do not need full elliptic regularity, so they can be used to tackle more general elliptic problems. Numerical experiments are reported to suonort our theorv.展开更多
Based on an asymptotic expansion of finite element, an extrapolation cascadic multigrid method (EXCMG) is proposed, in which the new extrapolation and quadratic interpolation are used to provide a better initial val...Based on an asymptotic expansion of finite element, an extrapolation cascadic multigrid method (EXCMG) is proposed, in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid. In the case of multiple grids, both superconvergence error in H^1-norm and the optimal error in l2-norm are analyzed. The numerical experiment shows the advantage of EXCMG in comparison with CMG.展开更多
In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the comp...In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the computational complexity of the method.展开更多
In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonl...In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.展开更多
Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to prov...Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid.In the case of triple grids,the error of the new initial value is analyzed in detail.A larger scale computation is completed in PC.展开更多
Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some ne...Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some new extrapolations and quadratic interpolations, which are used to provide better initial values on the refined grid. In the case of triple grids, the errors of the new initial values are analyzed in detail. The numerical experiments show that EXCMG has higher accuracy and efficiency.展开更多
In this paper, we develop the cascadic multigrid method for parabolic problems. The optimal convergence accuracy and computation complexity are obtained.
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is establishe...In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.展开更多
A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a s...A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a series of multilevel finite element spaces and nonlinear correcting steps on special coarsest spaces. Once the sequence of finite element spaces and the number of smoothing steps are appropriately chosen, the optimal convergence rate with the optimal computational work can be obtained. Some numerical experiments are presented to validate our theoretical analysis.展开更多
In this paper, we discuss the finite volume element method of P1-nonconforming quadrilateral element for elliptic problems and obtain optimal error estimates for general quadrilateral partition. An optimal cascadic mu...In this paper, we discuss the finite volume element method of P1-nonconforming quadrilateral element for elliptic problems and obtain optimal error estimates for general quadrilateral partition. An optimal cascadic multigrid algorithm is proposed to solve the non-symmetric large-scale system resulting from such discretization. Numerical experiments are reported to support our theoretical results.展开更多
In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optim...In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.展开更多
In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been f...In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.展开更多
The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a uni...The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.展开更多
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenp...In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.展开更多
基金supported by the National Basic Research Program of China under the grant 2005CB321701the National Science Foundation(NSF) of China(10731060)111 project(B08018)
文摘In this paper, standard and economical cascadic multigrid methods are considered for solving the algebraic systems resulting from the mortar finite element methods. Both cascadic multigrid methods do not need full elliptic regularity, so they can be used to tackle more general elliptic problems. Numerical experiments are reported to suonort our theorv.
基金Supported by National Natural Science Foundation of China (10771063)the Doctor Programme of the National Education Committee (20050542006)
文摘Based on an asymptotic expansion of finite element, an extrapolation cascadic multigrid method (EXCMG) is proposed, in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid. In the case of multiple grids, both superconvergence error in H^1-norm and the optimal error in l2-norm are analyzed. The numerical experiment shows the advantage of EXCMG in comparison with CMG.
基金supported by Educational Commission of Guangdong Province,China(No.2012LYM-0066)the National Social Science Foundation of China(No.14CJL016)
文摘In this paper a cascadic multigrid algorithm for the mortar finite element approximation of the semilinear elliptic problem is proposed,and corresponding theorems aregiven,which display the error estimate and the computational complexity of the method.
文摘In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.
基金the National Natural Science Foundation of China(Grant Nos.10771063,10571053)Doctoral Programme of National Education Ministry of China(Grant No.20050542006)Programme for New Century Excellent Talents in University(Grant No.NCET-060712)
文摘Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid.In the case of triple grids,the error of the new initial value is analyzed in detail.A larger scale computation is completed in PC.
基金The research is supported by the National Natural Science Foundation of China (No. 11071067) and the Key Laboratory of Education Ministry.
文摘Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some new extrapolations and quadratic interpolations, which are used to provide better initial values on the refined grid. In the case of triple grids, the errors of the new initial values are analyzed in detail. The numerical experiments show that EXCMG has higher accuracy and efficiency.
基金Subeidized by the Special Funds for Major State Basic Research Projects.
文摘In this paper, we develop the cascadic multigrid method for parabolic problems. The optimal convergence accuracy and computation complexity are obtained.
基金the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349)US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1)+2 种基金the National Natural Science Foundation of China(Grant No.10571172)the National Basic Research Program(Grant No.2005CB321704)the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9)
文摘In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
基金Acknowledgments. This work is supported in part by the National Natural Science Foundation of China (NSFC 91330202, 11371026, 11001259, 11031006, 2011CB309703) and the National Center for Mathematics and Interdisciplinary Science, CAS.
文摘A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel correction scheme. With this new scheme, an eigenvalue problem on the finest space can be solved by linear smoothing steps on a series of multilevel finite element spaces and nonlinear correcting steps on special coarsest spaces. Once the sequence of finite element spaces and the number of smoothing steps are appropriately chosen, the optimal convergence rate with the optimal computational work can be obtained. Some numerical experiments are presented to validate our theoretical analysis.
文摘In this paper, we discuss the finite volume element method of P1-nonconforming quadrilateral element for elliptic problems and obtain optimal error estimates for general quadrilateral partition. An optimal cascadic multigrid algorithm is proposed to solve the non-symmetric large-scale system resulting from such discretization. Numerical experiments are reported to support our theoretical results.
基金Supported by the National Natural Science Foundation of China under grant 10071015.
文摘In this paper, we consider the cascadic multigrid method for the mortar P1 nonconforming element which is used to solve the Poisson equation and prove that the cascadic conjugate gradient method is accurate with optimal complexity.
文摘In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.42274101)X.X.Wu was supported by the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts354)+2 种基金H.L.Hu was supported by the National Natural Science Foundation of China(Grant No.12071128)by the Natural Science Foundation of Hunan Province(Grant No.2021JJ30434)Z.L.Li was supported by a Simons Grant No.633724.
文摘The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.
基金supported by National Natural Science Foundation of China(Grant Nos.11801021 and 11571027)Foundation for Fundamental Research of Beijing University of Technology(Grant No.006000546318504)International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2018B32)。
文摘In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.