Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displac...Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displacement energy E_(d)as two major parameters via lowenergy SRIM Binary Collision Approximation (BCA) full cascade simulations.It is found that the number of atomic displacements cannot be uniquely determined by E_(PKA)/E_(d )or E_(D) /E_(d)(E_(D) refers to the damage energy) when the energy is comparable with E_(d).The effective energy E_(D,eff)proposed in the present work allows to describing the number of atomic displacements for most presently studied monatomic materials by the unique variable E_(D,eff)/E_(d).Nevertheless,it is noteworthy that the BCA simulation damage energy depends on E_(d),whereas the currently used analytical method is independent of E_(d).A more accurate analytical damage energy function should be determined by including the dependence on E_(d).展开更多
In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi...In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University (No. 2021qntd12)。
文摘Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom (PKA) energy E_(PKA)and threshold displacement energy E_(d)as two major parameters via lowenergy SRIM Binary Collision Approximation (BCA) full cascade simulations.It is found that the number of atomic displacements cannot be uniquely determined by E_(PKA)/E_(d )or E_(D) /E_(d)(E_(D) refers to the damage energy) when the energy is comparable with E_(d).The effective energy E_(D,eff)proposed in the present work allows to describing the number of atomic displacements for most presently studied monatomic materials by the unique variable E_(D,eff)/E_(d).Nevertheless,it is noteworthy that the BCA simulation damage energy depends on E_(d),whereas the currently used analytical method is independent of E_(d).A more accurate analytical damage energy function should be determined by including the dependence on E_(d).
文摘In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.