Guided by the intelligent construction of coal mines and integrating the concept of the Cyber-Physical System(CPS),a novel approach to a coal mine information-physical fusion system is proposed.This concept emerges fr...Guided by the intelligent construction of coal mines and integrating the concept of the Cyber-Physical System(CPS),a novel approach to a coal mine information-physical fusion system is proposed.This concept emerges from the advancement of intelligent mines and the growing need for enhanced safety in coal mine operations.From a system safety perspective,this approach aims to effectively evaluate security issues by better integrating the informational and physical layers of intelligent mines.Currently,research in areas such as power grids and water networks has widely adopted concepts of cascade failures and robustness.It is suggested that the CPS framework be adapted to the mining sector.Considering the critical role of coal mines in China's energy security and their vulnerability to cyber attacks,a mine-specific CPS system is designed.This system incorporates a model of mine information-physical fusion,including networks for mine operations,management,and control,tailored to the unique conditions of mine shafts and underground settings.Utilizing Markov process theory,the paper delves into the theoretical study of the cascade failure process under deliberate attack strategies.This analysis is essential to effectively assess the safety issues within the information-physical system,providing vital support for fault prediction and safety analysis.The model of cascading failures in the mine information-physical system is developed,and based on an analysis of resilience and robustness,the study identifies key factors influencing the security of mine information-physical systems.Critical factors affecting the reliability of these systems include the number of system nodes,node coupling,edge count,and the interconnection methods of the dual-layer dependency network.The paper concludes by discussing the challenges in analyzing the security of information-physical systems and suggesting directions for future research.展开更多
In wind and solar renewable-dominant hybrid alternating current/direct current(AC/DC)power systems,the active power of high-voltage direct current(HVDC)system is significantly limited by the security and stability eve...In wind and solar renewable-dominant hybrid alternating current/direct current(AC/DC)power systems,the active power of high-voltage direct current(HVDC)system is significantly limited by the security and stability events caused by cascading failures.To identify critical lines in cascading failures,a rapid risk assessment method is proposed based on the gradient boosting decision tree(GBDT)and frequent pat-tern growth(FP-Growth)algorithms.First,security and stability events triggered by cascading failures are analyzed to explain the impact of cascading failures on the maximum DC power.Then,a cascading failure risk index is defined,focusing on the DC power being limited.To handle the strong nonlinear relationship between the maximum DC power and cascading failures,a GBDT with an update strategy is utilized to rapidly predict the maximum DC power under uncertain operating conditions.Finally,the FP-Growth algorithm is improved to mine frequent patterns in cascading failures.The importance index for each fault in a frequent pattern is defined by evaluating its impact on cascading failures,enabling the identification of critical lines.Simulation results of a modified Ningxia–Shandong hybrid AC/DC system in China demonstrate that the proposed method can rapidly assess the risk of cascading failures and effectively identify critical lines.展开更多
Compared to single-layer networks,multilayer networks exhibit a more complex node degree composition,comprising both intra-layer and inter-layer degrees.However,the distinct impacts of these degree types on cascading ...Compared to single-layer networks,multilayer networks exhibit a more complex node degree composition,comprising both intra-layer and inter-layer degrees.However,the distinct impacts of these degree types on cascading failures remain underexplored.Distinguishing their effects is crucial for a deeper understanding of network structure,information propagation,and behavior prediction.This paper proposes a capacity-load model to influence and compare the influence of different degree types on cascading failures in multilayer networks.By designing three node removal strategies based on total degree,intra-layer degree,and inter-layer degree,simulation experiments are conducted on four types of networks.Network robustness is evaluated using the maximum number of removable nodes before collapse.The relationships between network robustness and the coupling coefficient,as well as load and capacity adjustment parameters,are also analyzed.The results indicate that the node removal strategy with the least impact on cascading failures varies across different types of networks,revealing the significance of different node degrees in failure propagation.Compared to other models,the proposed model enables networks to maintain a higher maximum number of removable nodes during cascading failures,demonstrating superior robustness.展开更多
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy...Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.展开更多
This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the compl...This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the complex network theory the vulnerability of the power system can be evaluated by the minimum load loss rate when considering power supply ability.Consequently according to the synergistic effect theory the critical line of the power system is defined by its influence on failure set vulnerability in N-k contingencies.The cascading failure modes are proposed based on the criterion whether the acceptable load curtailment level is below a preset value.Significant conclusions are revealed by results of IEEE 39 case analysis weak points of power networks and heavy load condition are the main causes of large-scale cascading failures damaging synergistic effects can result in partial failure developed into large-scale cascading failures vulnerable lines of power systems can directly lead the partial failure to deteriorate into a large blackout while less vulnerable lines can cause a large-scale cascading failure.展开更多
With the development of network science,the coupling between networks has become the focus of complex network research.However,previous studies mainly focused on the coupling between nodes,while ignored the coupling b...With the development of network science,the coupling between networks has become the focus of complex network research.However,previous studies mainly focused on the coupling between nodes,while ignored the coupling between edges.We propose a novel cascading failure model of two-layer networks.The model considers the different loads and capacities of edges,as well as the elastic and coupling relationship between edges.In addition,a more flexible load-capacity strategy is adopted to verify the model.The simulation results show that the model is feasible.Different networks have different behaviors for the same parameters.By changing the load parameters,capacity parameters,overload parameters,and distribution parameters reasonably,the robustness of the model can be significantly improved.展开更多
The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in...The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.展开更多
In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by sim...In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.展开更多
This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating som...This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.展开更多
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func...This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.展开更多
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ...With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.展开更多
Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with thr...Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with three other kinds of load- capacity linear or non-linear relationship models in model networks as well as a number of real-world weighted networks including the railway network, the airports network and the metro network, the LCOR model is shown to have the best robustness against cascading failure with less cost. Furthermore, theoretical analysis and computational method of its cost threshold are provided to validate the effectiveness of the LCOR model. The results show that the LCOR model is effective for designing real-world networks with high robustness and less cost against cascading failure.展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network ar...Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.展开更多
In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machin...In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.展开更多
In this paper,the electrical PageRank method is proposed to identify the critical nodes in a power grid considering cascading faults as well as directional weighting.This method can rapidly and accurately focus on the...In this paper,the electrical PageRank method is proposed to identify the critical nodes in a power grid considering cascading faults as well as directional weighting.This method can rapidly and accurately focus on the critical nodes in the power system.First,the proposed method simulates the scenario in a grid after a node is attacked by cascading faults.The load loss of the grid is calculated.Second,the electrical PageRank algorithm is proposed.The nodal importance of a grid is determined by considering cascading faults as well as directional weights.The electrical PageRank values of the system nodes are obtained based on the proposed electrical PageRank algorithm and ranked to identify the critical nodes in a grid.Finally,the effectiveness of the proposed method is verified using the IEEE39 node system.The proposed method is highly effective in preventing the occurrence of cascading faults in power systems.展开更多
Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we ...Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.展开更多
In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distributio...In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.展开更多
This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted dependin...This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.展开更多
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free t...In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.展开更多
文摘Guided by the intelligent construction of coal mines and integrating the concept of the Cyber-Physical System(CPS),a novel approach to a coal mine information-physical fusion system is proposed.This concept emerges from the advancement of intelligent mines and the growing need for enhanced safety in coal mine operations.From a system safety perspective,this approach aims to effectively evaluate security issues by better integrating the informational and physical layers of intelligent mines.Currently,research in areas such as power grids and water networks has widely adopted concepts of cascade failures and robustness.It is suggested that the CPS framework be adapted to the mining sector.Considering the critical role of coal mines in China's energy security and their vulnerability to cyber attacks,a mine-specific CPS system is designed.This system incorporates a model of mine information-physical fusion,including networks for mine operations,management,and control,tailored to the unique conditions of mine shafts and underground settings.Utilizing Markov process theory,the paper delves into the theoretical study of the cascade failure process under deliberate attack strategies.This analysis is essential to effectively assess the safety issues within the information-physical system,providing vital support for fault prediction and safety analysis.The model of cascading failures in the mine information-physical system is developed,and based on an analysis of resilience and robustness,the study identifies key factors influencing the security of mine information-physical systems.Critical factors affecting the reliability of these systems include the number of system nodes,node coupling,edge count,and the interconnection methods of the dual-layer dependency network.The paper concludes by discussing the challenges in analyzing the security of information-physical systems and suggesting directions for future research.
基金supported by the National Key Research and Development Program of China"Key technologies for system stability and HVDC transmission of large-scale renewable energy generation base without conventional power support(2022YFB2402700)"the project of the State Grid Corporation of China(52272222001J).
文摘In wind and solar renewable-dominant hybrid alternating current/direct current(AC/DC)power systems,the active power of high-voltage direct current(HVDC)system is significantly limited by the security and stability events caused by cascading failures.To identify critical lines in cascading failures,a rapid risk assessment method is proposed based on the gradient boosting decision tree(GBDT)and frequent pat-tern growth(FP-Growth)algorithms.First,security and stability events triggered by cascading failures are analyzed to explain the impact of cascading failures on the maximum DC power.Then,a cascading failure risk index is defined,focusing on the DC power being limited.To handle the strong nonlinear relationship between the maximum DC power and cascading failures,a GBDT with an update strategy is utilized to rapidly predict the maximum DC power under uncertain operating conditions.Finally,the FP-Growth algorithm is improved to mine frequent patterns in cascading failures.The importance index for each fault in a frequent pattern is defined by evaluating its impact on cascading failures,enabling the identification of critical lines.Simulation results of a modified Ningxia–Shandong hybrid AC/DC system in China demonstrate that the proposed method can rapidly assess the risk of cascading failures and effectively identify critical lines.
基金supported by the National Social Science Fund Project(No.23&ZD115)the Graduate Student Research Innovation Project of the School of Mathematics and Statistics,Hubei Minzu University(No.STK2023011)。
文摘Compared to single-layer networks,multilayer networks exhibit a more complex node degree composition,comprising both intra-layer and inter-layer degrees.However,the distinct impacts of these degree types on cascading failures remain underexplored.Distinguishing their effects is crucial for a deeper understanding of network structure,information propagation,and behavior prediction.This paper proposes a capacity-load model to influence and compare the influence of different degree types on cascading failures in multilayer networks.By designing three node removal strategies based on total degree,intra-layer degree,and inter-layer degree,simulation experiments are conducted on four types of networks.Network robustness is evaluated using the maximum number of removable nodes before collapse.The relationships between network robustness and the coupling coefficient,as well as load and capacity adjustment parameters,are also analyzed.The results indicate that the node removal strategy with the least impact on cascading failures varies across different types of networks,revealing the significance of different node degrees in failure propagation.Compared to other models,the proposed model enables networks to maintain a higher maximum number of removable nodes during cascading failures,demonstrating superior robustness.
基金supported by the National Natural Science Foundation of China(72271242)Hunan Provincial Natural Science Foundation of China for Excellent Young Scholars(2022JJ20046).
文摘Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.
基金The National Natural Science Foundation of China(No.51277028)
文摘This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the complex network theory the vulnerability of the power system can be evaluated by the minimum load loss rate when considering power supply ability.Consequently according to the synergistic effect theory the critical line of the power system is defined by its influence on failure set vulnerability in N-k contingencies.The cascading failure modes are proposed based on the criterion whether the acceptable load curtailment level is below a preset value.Significant conclusions are revealed by results of IEEE 39 case analysis weak points of power networks and heavy load condition are the main causes of large-scale cascading failures damaging synergistic effects can result in partial failure developed into large-scale cascading failures vulnerable lines of power systems can directly lead the partial failure to deteriorate into a large blackout while less vulnerable lines can cause a large-scale cascading failure.
基金the National Natural Science Foundation of China(Grant No.61663030)the Natural Science Foundation of Jiangxi Province,China(Grant No.20142BAB207021)the Innovation Fund Designated for Graduate Students of Jiangxi Province,China(Grant No.YC2021-S680).
文摘With the development of network science,the coupling between networks has become the focus of complex network research.However,previous studies mainly focused on the coupling between nodes,while ignored the coupling between edges.We propose a novel cascading failure model of two-layer networks.The model considers the different loads and capacities of edges,as well as the elastic and coupling relationship between edges.In addition,a more flexible load-capacity strategy is adopted to verify the model.The simulation results show that the model is feasible.Different networks have different behaviors for the same parameters.By changing the load parameters,capacity parameters,overload parameters,and distribution parameters reasonably,the robustness of the model can be significantly improved.
基金the National Basic Research Program (973) of China (No. 2004CB217902)the National Natural Science Foundation of China (Nos. 60421002 and 60804045)the Postdoctoral Science Foundation of China (No. 20070421163)
文摘The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.
基金supported by National Basic Research Program of China (Grant No 2006CB705500)Changjiang Scholars and Innovative Research Team in University (Grant No IRT0605)the National Natural Science Foundation of China (Grant No 70631001)
文摘In this paper, cascading failure is studied by coupled map lattice (CML) methods in preferential attachment community networks. It is found that external perturbation R is increasing with modularity Q growing by simulation. In particular, the large modularity Q can hold off the cascading failure dynamic process in community networks. Furthermore, different attack strategies also greatly affect the cascading failure dynamic process. It is particularly significant to control cascading failure process in real community networks.
基金supported by National Basic Research Program of China (Grant No 2006CB705500)Chang-Jiang Scholars and Innovative Research Team in University of China (Grant No IRT0605)the National Natural Science Foundation of China (Grant No70631001)
文摘This paper studies the cascading failure on random networks and scale-free networks by introducing the tolerance parameter of edge based on the coupled map lattices methods. The whole work focuses on investigating some indices including the number of failed edges, dynamic edge tolerance capacity and the perturbation of edge. In general, it assumes that the perturbation is attributed to the normal distribution in adopted simulations. By investigating the effectiveness of edge tolerance in scale-free and random networks, it finds that the larger tolerance parameter λ can more efficiently delay the cascading failure process for scale-free networks than random networks. These results indicate that the cascading failure process can be effectively controlled by increasing the tolerance parameter λ. Moreover, the simulations also show that, larger variance of perturbation can easily trigger the cascading failures than the smaller one. This study may be useful for evaluating efficiency of whole traffic systems, and for alleviating cascading failure in such systems.
基金the National Natural Science Foundation of China(61873057)the Education Department of Jilin Province(JJKH20200118KJ).
文摘This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.
基金supported by the National Natural Science Foundation of China(60972145)the National Aerospace Science Foundation of China(20140751008)
文摘With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60804066 and 61165007)the Scientific and Technological Project of Education Department of Jiangxi Province, China (Grant Nos. GJJ12286 and KJLD12068)
文摘Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with three other kinds of load- capacity linear or non-linear relationship models in model networks as well as a number of real-world weighted networks including the railway network, the airports network and the metro network, the LCOR model is shown to have the best robustness against cascading failure with less cost. Furthermore, theoretical analysis and computational method of its cost threshold are provided to validate the effectiveness of the LCOR model. The results show that the LCOR model is effective for designing real-world networks with high robustness and less cost against cascading failure.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金supported by the National Key Technology R&D Program of China under Grant No.2012BAH46B04
文摘Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.
基金Supported by National Natural Science Foundation of China(Grant No.51175222)Jilin Provincial Natural Science Foundation of China(Grant No.20150101025JC)High-end CNC machine tools and basic manufacturing equipment science and technology of major special projects(Grant No.2015ZX04003002)
文摘In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.
基金supported by the National Natural Science Foundation of China(61873057).
文摘In this paper,the electrical PageRank method is proposed to identify the critical nodes in a power grid considering cascading faults as well as directional weighting.This method can rapidly and accurately focus on the critical nodes in the power system.First,the proposed method simulates the scenario in a grid after a node is attacked by cascading faults.The load loss of the grid is calculated.Second,the electrical PageRank algorithm is proposed.The nodal importance of a grid is determined by considering cascading faults as well as directional weights.The electrical PageRank values of the system nodes are obtained based on the proposed electrical PageRank algorithm and ranked to identify the critical nodes in a grid.Finally,the effectiveness of the proposed method is verified using the IEEE39 node system.The proposed method is highly effective in preventing the occurrence of cascading faults in power systems.
基金the National Natural Science Foundation of China (No. 60573128)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20060183043)+1 种基金the China–British Columbia Innovation and Commercialization Strategic Develop-ment Grant (No. 2008DFA12140)the Jilin University 985 Graduate Student Innovation Foundation (No. 20080235)
文摘Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing fimctions based on betweenness centrality. By introducing the concept of 'delay time', we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation fimction of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.
基金Project partly supported by National Basic Research Program of China (Grant No 2006CB705500)National Natural Science Foundation of China (Grant Nos 70631001, 70671008 and 70801005)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No 48033)
文摘In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.
基金Project supported by the National Natural Science Foundation of China(Grant No.30570432)the General Project of Hunan Provincial Educational Department of China(Grant No.07C754)
文摘This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.F2014203239)the Autonomous Research Fund of Young Teacher in Yanshan University(Grant No.14LGB017)Yanshan University Doctoral Foundation,China(Grant No.B867)
文摘In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.