Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O soluti...Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.展开更多
Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is a...Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.展开更多
Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit...Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.展开更多
Salination of solutions of salinity gradient releases large‐scale clean and renewable energy, which can be directly and efficiently transformed into electrical energy using ion‐selective nanofluidic channel membrane...Salination of solutions of salinity gradient releases large‐scale clean and renewable energy, which can be directly and efficiently transformed into electrical energy using ion‐selective nanofluidic channel membranes. However, conventional ion‐selective membranes are typically either cation‐ or anion‐selective. A pH‐switchable system capable of dual cation and anion transport along with salt gradient energy harvesting properties has not been demonstrated in ion‐selective membranes. Here, we constructed an amphoteric heterolayer metal–organic framework (MOF) membrane with subnanochannels modified with carboxylic and amino functional groups. The amphoteric MOF‐composite membrane, AAO/aUiO‐66‐(COOH)_(2)/UiO‐66‐NH_(2), exhibits pH‐tuneable ion conduction and achieves osmotic energy conversion of 7.4 and 5.7 W/m^(2) in acidic and alkaline conditions, respectively, using a 50‐fold salt gradient. For different anions but the same cation diffusion transport, the amphoteric membrane produces an outstanding I−/CO_(3)^(2−) selectivity of ~4160 and an osmotic energy conversion of ~133.5 W/m^(2). The amphoteric membrane concept introduces a new pathway to explore the development of ion transport and separation technologies and their application in osmotic energy‐conversion devices and flow batteries.展开更多
Artificial ion channels that enable high-efficiency ion transport have important implications in nanofluidics and biomedical applications such as drug delivery.Herein,we show a simulation-based chemical design of a bi...Artificial ion channels that enable high-efficiency ion transport have important implications in nanofluidics and biomedical applications such as drug delivery.Herein,we show a simulation-based chemical design of a biomimetic sodium channel that possesses permeation rate and selectivity potentially higher than those of the state-of-the-art natural vertebrate voltage-gated sodium channels.Importantly,our theoretical findings have undergone empirical testing,aligning well with the Arrhenius law as derived from a diverse range of experimental results.The high-efficiency ion transport is achieved by anchoring the carboxylate functional groups within the channel filter.A key chemical guiding principle underlying the ion channel design is that the free-energy barrier for the Na^(+)passage across the channel should be comparable to typical thermal energy at room temperature.With the implementation of the chemical design,we found that the relatively low free-energy barrier can be attributed to the compensation effect of the carboxylate groups to the partially lost oxygen shell of the ion within the ion channel,as well as to the consonant vibration of the ions inside and outside the channel.This mechanistic understanding brings new insight,at the molecular level,into the high-efficiency ion transport across the designed membrane channels.The proof of principle achieved from the simulations will stimulate future experimental confirmation and potential applications of the high-performance artificial channels in nanofluidics and in bioinspired iontronics.展开更多
文摘Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.
基金the National Natural Science Foundation of China(No.81600911).
文摘Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+6 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_1429)the National Key R&D Program of China(2024YFE0109200)the Fundamental Research Funds for the Central Universities(No.2024300440)Guangdong Basic and Applied Basic Research Foundation(2025A1515011098)the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)Ji'an Science and Technology Plan Project(2024H-100301)。
文摘Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
基金the support provided by the Surface Analysis Laboratory, Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre of the University of New South Walesthe support of the Iranian Research Organization for Science and Technology (IROST), contract no. 034592
文摘Salination of solutions of salinity gradient releases large‐scale clean and renewable energy, which can be directly and efficiently transformed into electrical energy using ion‐selective nanofluidic channel membranes. However, conventional ion‐selective membranes are typically either cation‐ or anion‐selective. A pH‐switchable system capable of dual cation and anion transport along with salt gradient energy harvesting properties has not been demonstrated in ion‐selective membranes. Here, we constructed an amphoteric heterolayer metal–organic framework (MOF) membrane with subnanochannels modified with carboxylic and amino functional groups. The amphoteric MOF‐composite membrane, AAO/aUiO‐66‐(COOH)_(2)/UiO‐66‐NH_(2), exhibits pH‐tuneable ion conduction and achieves osmotic energy conversion of 7.4 and 5.7 W/m^(2) in acidic and alkaline conditions, respectively, using a 50‐fold salt gradient. For different anions but the same cation diffusion transport, the amphoteric membrane produces an outstanding I−/CO_(3)^(2−) selectivity of ~4160 and an osmotic energy conversion of ~133.5 W/m^(2). The amphoteric membrane concept introduces a new pathway to explore the development of ion transport and separation technologies and their application in osmotic energy‐conversion devices and flow batteries.
基金partially supported by the National Natural Science Foundation of China(22272019)Sichuan Science and Technology Program(2022ZYD0039,2022NSFSC1213,2023NSFSC1069)。
基金supported by the National Natural Science Foundation of China(Nos.12374214,12022508,12074394,T2241002,12204547,and 12225511)National Key Research and Development Program of China(No.2021YFA1200404)+1 种基金National Defense Technology Innovation Special Zone and sponsored by Shanghai Rising-Star Program(No.23QA1404200)support by Hong Kong Global STEM Professorship Scheme and and a GRF grant(11204123)from the Research Grants Council of Hong Kong.
文摘Artificial ion channels that enable high-efficiency ion transport have important implications in nanofluidics and biomedical applications such as drug delivery.Herein,we show a simulation-based chemical design of a biomimetic sodium channel that possesses permeation rate and selectivity potentially higher than those of the state-of-the-art natural vertebrate voltage-gated sodium channels.Importantly,our theoretical findings have undergone empirical testing,aligning well with the Arrhenius law as derived from a diverse range of experimental results.The high-efficiency ion transport is achieved by anchoring the carboxylate functional groups within the channel filter.A key chemical guiding principle underlying the ion channel design is that the free-energy barrier for the Na^(+)passage across the channel should be comparable to typical thermal energy at room temperature.With the implementation of the chemical design,we found that the relatively low free-energy barrier can be attributed to the compensation effect of the carboxylate groups to the partially lost oxygen shell of the ion within the ion channel,as well as to the consonant vibration of the ions inside and outside the channel.This mechanistic understanding brings new insight,at the molecular level,into the high-efficiency ion transport across the designed membrane channels.The proof of principle achieved from the simulations will stimulate future experimental confirmation and potential applications of the high-performance artificial channels in nanofluidics and in bioinspired iontronics.