Transition metal oxides with high capacity are considered a promising electrode material for lithium-ion batteries(LIBs).Nevertheless,the huge volume expansion and poor conductivity severely hamper their practical app...Transition metal oxides with high capacity are considered a promising electrode material for lithium-ion batteries(LIBs).Nevertheless,the huge volume expansion and poor conductivity severely hamper their practical application.In this work,a carbon riveting method is reported to address the above issues by designing multilayered N-doped carbon(N-carbon) enveloped Fe3O4/graphene nanosheets.When evaluated as a negative electrode,the N-carbon/Fe3O4/graphene nanocomposites demonstrate greatly enhanced electrochemical properties compared with Fe3O4/graphene.The N-carbon/Fe3O4/graphene presents a superior reversible capacity(807 mAh/g) over Fe3O4/graphene(540 mAh/g).Furthermore,it affords a considerable capacity of 550 mAh/g at 1 A/g over 700 cycles,indicating supe rb cycling stability.The structure-property correlation studies reveal that the carbon riveting layer is essential for enhancing the lithium diffusion kinetics.The good electrochemical properties and effective structure design make the carbon riveting strategy quite general and reliable to manipulate high performance electrodes for future LIBs.展开更多
The mycotoxin, patulin (4-hydroxy-4H-furo [3, 2c] pyran-2 [6H]-one), is produced by a number of fungi common to fruit and vegetable-based products, most notably apples. Patulin contamination within apple products po...The mycotoxin, patulin (4-hydroxy-4H-furo [3, 2c] pyran-2 [6H]-one), is produced by a number of fungi common to fruit and vegetable-based products, most notably apples. Patulin contamination within apple products poses a serious health risk to consumers. Studies done on laboratory animals have demonstrated that patulin has a broad spectrum of toxicity, including mutagen city and carcinogenicity. The aim of the experiment was studying influence of selectively acting activated carbon powder--Ercarbon SH (Erbsloh, Germany) which is special produced for lowering HMF (hydroxy methyl furfural), on reduction of patulin content in clear apple juice. Industrial apple row material with some damaged parts was pressed, juice was pasteurized at 95 ℃ during 2 min. After cooling on 55 ℃, enzymatic treated and clarified juice were filtered by 0.45 [am pore sizes membrane filter, Apple clear juice sample was divided for five parts. The samples of apple juice were diluted to 11.5° Brix and contacted with concentrations of 2, 2.5, 3 and 3.5 g/L activated carbon powder for 30 min. After filtration in the experimental samples, putulin was quantitatively determined by HPLC (high performance liquid chromatography with UV) detector at 276 nm. The research revealed that the best results were achieved by treatment with activated carbon in its powder form at concentration of 2.5 g/L with 30 min contact time.展开更多
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i...The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Two international conferences in November 2025 jointly outlined a profound transformation of climate governance.The Committee on Trade and Environment(CTE)of the World Trade Organization(WTO)held a conference in Genev...Two international conferences in November 2025 jointly outlined a profound transformation of climate governance.The Committee on Trade and Environment(CTE)of the World Trade Organization(WTO)held a conference in Geneva,Switzerland,on November 4,where the topic of cooperation on trade-related carbon standards aroused heated discussions.The Leaders'Summit of the 30th Conference of the Parties(COP)to the UN Framework Convention on Climate Change(UNFCCC)was held in Belém,Brazil,on November 7.At the meeting,the Open Coalition on Compliance Carbon Markets was officially launched with the initial membership of 11 economies including Brazil,China,and the EU.As the world's first transnational alliance on compliant carbon markets,the coalition aims to coordinate carbon pricing mechanisms,emission trading systems and related policies in various countries,and realize the interconnection of global compliance carbon market networks.展开更多
Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_...Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors.展开更多
Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in mariti...Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in maritime shipping using the levelized cost of energy methodology.It includes a detailed comparative analysis based on essential criteria and sensitivity assessments to highlight the economic impacts of technological advancements.Key factors influencing total costs include fuel costs,carbon pricing,and energy demands for carbon capture.The findings reveal that methanol is more cost-effective than heavy fuel oil(HFO)when priced below 3000 CNY/t,assuming HFO costs 4400 CNY/t.Additionally,methanol with post-combustion carbon capture is less expensive than pre-combustion carbon capture.When carbon prices rise above 480 CNY/t,carbon capture technologies prove more economical than purchasing carbon emission allowances for HFO and liquefied natural gas.Enhanc-ing the use of exhaust gas waste heat is recommended for cost savings.Post-combustion carbon capture also shows greater efficiency,requiring about 1.1 GJ/t less energy than pre-combustion methods,leading to lower overall costs.Future research should focus on market mechanisms to stabilize fuel prices and develop less energy-intensive carbon capture technologies.This study offers critical insights into effective decarbonization strategies for advancing global maritime trade in the present and future.展开更多
Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspher...Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.展开更多
Conductive materials(CM)can improve methane production(MP)efficiency in many methanogenic systems.However,several types of CM exist,and there are uncertainties regarding whether they all improve MP efficiency to the s...Conductive materials(CM)can improve methane production(MP)efficiency in many methanogenic systems.However,several types of CM exist,and there are uncertainties regarding whether they all improve MP efficiency to the same extent and modulate microbial communities in a similar way.To investigate that,different microbial enrichments with and without activated carbon(AC),magnetite(Mag),and zeolites(Zeo)(at 0.5 g/L)were developed.MP profiles and microbial composition changes were compared among enrichments.The behavior of all enrichments was different,although the initial inoculum sludge was the same.Lag phase duration was lower in AC enrichment,while the complete conversion of butyrate to methane was faster in Mag enrichment.Syntrophomonas was the most abundant bacterial genus in all enrichments,but changes in the methanogenic community were evident.Acetoclastic methanogens were more diverse in Mag enrichment,with microorganisms assigned to Methanosarcina and Methanothrix gener1,but Methanothrix was the only acetoclastic methanogen in the other enrichments.On the other hand,different species of hydrogenotrophic methanogens prevailed in distinct enrichments.The metatranscriptomics results revealed that the dominant mechanism of interspecies electron transfer in the AC enrichment utilized hydrogen as the electron carrier,and no evidences of direct interspecies electron transfer(DIET)could be found.These results showed how different CM modulate microbial communities and affect MP efficiency through mechanisms that do not necessarily involve DIET or mediation via CM.展开更多
A batch of important national standards for CCUS released.Recently,State Administration for Market Regulation(SAMR)and National Standardization Administration of China(SAC)released 12 national standards for carbon cap...A batch of important national standards for CCUS released.Recently,State Administration for Market Regulation(SAMR)and National Standardization Administration of China(SAC)released 12 national standards for carbon capture,utilization and storage(CCUS),which will come into effect on July 1,2026.展开更多
Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantati...Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantation process including preoperative evaluation,donation,organ and patient transportation,surgery,postoperative recovery,and follow-up.This is a topic that has not been fully addressed yet,but its importance is being increasingly appreciated in surgery.The aim of this study was to investigate the carbon footprint associated with transplantation and propose sustainable mitigating solutions.A comprehensive review of the existing literature on transplantation was conducted and supplemented with findings from the broader fields of surgical and perioperative care,given the scarcity of available data.The analysis identified the most involved environmental factors and attempted to offer practical solutions based on current sustainability practices.Notably,no study has yet examined the carbon footprint associated with the entire transplantation procedure.Only five studies have attempted to assess the environmental impact of kidney or liver transplants,but they focused,almost explicitly,on specific steps of the process.By employing an extrapolative methodology from the broader surgical field,we determined that the primary contributors to the environmental impact of transplantation are energy,consumables and materials,anesthesia and pharmaceuticals,transportation,and water.This review offers practical solutions utilizing the 5R framework,emphasizing sustainability to ensure transplantation remains clinically and environmentally relevant.展开更多
Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic de...Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion.展开更多
Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in ...Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.展开更多
Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial het...Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.展开更多
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje...To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.展开更多
Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-...Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite...Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.展开更多
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-...Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51602167,51972182 and 61971252)Shandong Provincial Science Foundation(No.ZR2017JL021)+2 种基金Key Research and Development Program(No.2018GGX102033)Qingdao Applied Fundamental Research Project(No.17-1-1-81-jch)"Distinguished Taishan Scholar"Project。
文摘Transition metal oxides with high capacity are considered a promising electrode material for lithium-ion batteries(LIBs).Nevertheless,the huge volume expansion and poor conductivity severely hamper their practical application.In this work,a carbon riveting method is reported to address the above issues by designing multilayered N-doped carbon(N-carbon) enveloped Fe3O4/graphene nanosheets.When evaluated as a negative electrode,the N-carbon/Fe3O4/graphene nanocomposites demonstrate greatly enhanced electrochemical properties compared with Fe3O4/graphene.The N-carbon/Fe3O4/graphene presents a superior reversible capacity(807 mAh/g) over Fe3O4/graphene(540 mAh/g).Furthermore,it affords a considerable capacity of 550 mAh/g at 1 A/g over 700 cycles,indicating supe rb cycling stability.The structure-property correlation studies reveal that the carbon riveting layer is essential for enhancing the lithium diffusion kinetics.The good electrochemical properties and effective structure design make the carbon riveting strategy quite general and reliable to manipulate high performance electrodes for future LIBs.
文摘The mycotoxin, patulin (4-hydroxy-4H-furo [3, 2c] pyran-2 [6H]-one), is produced by a number of fungi common to fruit and vegetable-based products, most notably apples. Patulin contamination within apple products poses a serious health risk to consumers. Studies done on laboratory animals have demonstrated that patulin has a broad spectrum of toxicity, including mutagen city and carcinogenicity. The aim of the experiment was studying influence of selectively acting activated carbon powder--Ercarbon SH (Erbsloh, Germany) which is special produced for lowering HMF (hydroxy methyl furfural), on reduction of patulin content in clear apple juice. Industrial apple row material with some damaged parts was pressed, juice was pasteurized at 95 ℃ during 2 min. After cooling on 55 ℃, enzymatic treated and clarified juice were filtered by 0.45 [am pore sizes membrane filter, Apple clear juice sample was divided for five parts. The samples of apple juice were diluted to 11.5° Brix and contacted with concentrations of 2, 2.5, 3 and 3.5 g/L activated carbon powder for 30 min. After filtration in the experimental samples, putulin was quantitatively determined by HPLC (high performance liquid chromatography with UV) detector at 276 nm. The research revealed that the best results were achieved by treatment with activated carbon in its powder form at concentration of 2.5 g/L with 30 min contact time.
基金Supported by the National Natural Science Foundation of China(22378181).
文摘The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
文摘Two international conferences in November 2025 jointly outlined a profound transformation of climate governance.The Committee on Trade and Environment(CTE)of the World Trade Organization(WTO)held a conference in Geneva,Switzerland,on November 4,where the topic of cooperation on trade-related carbon standards aroused heated discussions.The Leaders'Summit of the 30th Conference of the Parties(COP)to the UN Framework Convention on Climate Change(UNFCCC)was held in Belém,Brazil,on November 7.At the meeting,the Open Coalition on Compliance Carbon Markets was officially launched with the initial membership of 11 economies including Brazil,China,and the EU.As the world's first transnational alliance on compliant carbon markets,the coalition aims to coordinate carbon pricing mechanisms,emission trading systems and related policies in various countries,and realize the interconnection of global compliance carbon market networks.
基金supported by the National Natural Science Foundation of China(No.42225103).
文摘Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors.
基金supported by the National Key R&D Program of China(No.2022YFC3701500)the Key R&D Plan Projects of Zhejiang Province(No.2024SSYS0072)Zhejiang Provincial Natural Science Foundation(No.LDT23E0601).
文摘Ship operations are crucial to global trade,and their decarbonization is essential to mitigate climate change.This study evaluates the economic viability of existing and emerging decarbonization technologies in maritime shipping using the levelized cost of energy methodology.It includes a detailed comparative analysis based on essential criteria and sensitivity assessments to highlight the economic impacts of technological advancements.Key factors influencing total costs include fuel costs,carbon pricing,and energy demands for carbon capture.The findings reveal that methanol is more cost-effective than heavy fuel oil(HFO)when priced below 3000 CNY/t,assuming HFO costs 4400 CNY/t.Additionally,methanol with post-combustion carbon capture is less expensive than pre-combustion carbon capture.When carbon prices rise above 480 CNY/t,carbon capture technologies prove more economical than purchasing carbon emission allowances for HFO and liquefied natural gas.Enhanc-ing the use of exhaust gas waste heat is recommended for cost savings.Post-combustion carbon capture also shows greater efficiency,requiring about 1.1 GJ/t less energy than pre-combustion methods,leading to lower overall costs.Future research should focus on market mechanisms to stabilize fuel prices and develop less energy-intensive carbon capture technologies.This study offers critical insights into effective decarbonization strategies for advancing global maritime trade in the present and future.
基金supported by the National Key R&D Program of China(No.2021YFB3501102).
文摘Porous carbon microspheres are widely regarded as a superior CO_(2) adsorbent due to their exceptional efficiency and affordability.However,better adsorption performance is very attractive for porous carbon microspheres.And modification of the pore structure is one of the effective strategies.In this study,multi-cavity mesoporous carbon microspheres were successfully synthesized by the synergistic method of soft and hard templates,during which a phenolic resin with superior thermal stability was employed as the carbon precursor and a mixture of silica sol and F108 as the mesoporous template.Carbon microspheres with multi-cavity mesoporous structures were prepared,and all the samples showed highly even mesopores,with diameters around 12 nm.The diameter of these microspheres decreased from 396.8 nm to about 182.5 nm with the increase of silica sol.After CO_(2) activation,these novel carbon microspheres(APCF0.5-S1.75)demonstrated high specific surface area(983.3 m^(2)/g)and remarkable CO_(2) uptake of 4.93 mmol/g at 0℃ and1 bar.This could be attributed to the unique multi-cavity structure,which offers uniform mesoporous pore channels,minimal CO_(2) transport of and a greater number of active sites for CO_(2) adsorption.
基金supported by the Portuguese Foundation for Science and Technology(FCT)under the scope of the strategic funding of UIDB/04469/2020 unit and by the CM4Methane project(Ref:PTDC/BTA-BTA/2249/2021,DOI 10.54499/PTDC/BTABTA/2249/2021)FCT and European Union(EU),through the Portuguese State Budget and the European Social Fund under the scope of Norte2020-Programa Operacional Regional do Norte,also funded the SFRH/BD/132003/2017 and COVID/BD/152431/2022 grants held by Cátia S.N.Braga.,and the SFRH/BD/147271/2019 grant held by João C.Sequeira.M.SaloméDuarte acknowledges FCT for the Junior Research contract obtained under the scope of the Scientific Stimulus Employment 2022(ref:2022.06569.CEECIND/CP1718/CT0004,doi:https://doi.org/10.54499/2022.06569.CEECIND/CP1718/CT0004)PhD M.Fernando R.Pereira and PhD O.SaloméG.Soares from the Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,Faculty of Engineering(University of Porto),for providing the AC used in this study.
文摘Conductive materials(CM)can improve methane production(MP)efficiency in many methanogenic systems.However,several types of CM exist,and there are uncertainties regarding whether they all improve MP efficiency to the same extent and modulate microbial communities in a similar way.To investigate that,different microbial enrichments with and without activated carbon(AC),magnetite(Mag),and zeolites(Zeo)(at 0.5 g/L)were developed.MP profiles and microbial composition changes were compared among enrichments.The behavior of all enrichments was different,although the initial inoculum sludge was the same.Lag phase duration was lower in AC enrichment,while the complete conversion of butyrate to methane was faster in Mag enrichment.Syntrophomonas was the most abundant bacterial genus in all enrichments,but changes in the methanogenic community were evident.Acetoclastic methanogens were more diverse in Mag enrichment,with microorganisms assigned to Methanosarcina and Methanothrix gener1,but Methanothrix was the only acetoclastic methanogen in the other enrichments.On the other hand,different species of hydrogenotrophic methanogens prevailed in distinct enrichments.The metatranscriptomics results revealed that the dominant mechanism of interspecies electron transfer in the AC enrichment utilized hydrogen as the electron carrier,and no evidences of direct interspecies electron transfer(DIET)could be found.These results showed how different CM modulate microbial communities and affect MP efficiency through mechanisms that do not necessarily involve DIET or mediation via CM.
文摘A batch of important national standards for CCUS released.Recently,State Administration for Market Regulation(SAMR)and National Standardization Administration of China(SAC)released 12 national standards for carbon capture,utilization and storage(CCUS),which will come into effect on July 1,2026.
文摘Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantation process including preoperative evaluation,donation,organ and patient transportation,surgery,postoperative recovery,and follow-up.This is a topic that has not been fully addressed yet,but its importance is being increasingly appreciated in surgery.The aim of this study was to investigate the carbon footprint associated with transplantation and propose sustainable mitigating solutions.A comprehensive review of the existing literature on transplantation was conducted and supplemented with findings from the broader fields of surgical and perioperative care,given the scarcity of available data.The analysis identified the most involved environmental factors and attempted to offer practical solutions based on current sustainability practices.Notably,no study has yet examined the carbon footprint associated with the entire transplantation procedure.Only five studies have attempted to assess the environmental impact of kidney or liver transplants,but they focused,almost explicitly,on specific steps of the process.By employing an extrapolative methodology from the broader surgical field,we determined that the primary contributors to the environmental impact of transplantation are energy,consumables and materials,anesthesia and pharmaceuticals,transportation,and water.This review offers practical solutions utilizing the 5R framework,emphasizing sustainability to ensure transplantation remains clinically and environmentally relevant.
基金supports of the National Natural Science Foundation of China(NSFC)(52021004,52394202)key project of the Joint Fund for Innovation and Development of Chongqing Natural Science Foundation(CSTB2022NSCQ-LZX0013)+1 种基金the National Natural Science Foundation of China(NSFC)(52301232,and 52476056)the Natural Science Foundation of Chongqing Province(2024NSCQ-MSX1109).
文摘Controllable synthesis of ultrathin metallene nanosheets and rational design of their spatial arrangement in favor of electrochemical catalysis are critical for their renewable energy applications.Here,a biomimetic design of“Trunk-Branch-Leaf”strategy is proposed to prepare the ultrathin edge-riched Zn-ene“leaves”with a thickness of~2.5 nm,adjacent Zn-ene cross-linked with each other,which are supported by copper nanoneedle“branches”on copper mesh“trunks,”named as Zn-ene/Cu-CM.The resulting superstructure enables the formation of an interconnected network and multiple channels,which can be used as an electrocatalytic CO_(2) reduction reaction(CO_(2)RR)electrode to allow a fast charge and mass transfer as well as a large electrolyte reservoir.By virtue of the distinctive structure,the obtained Zn-ene/Cu-CM electrode exhibits excellent selectivity and activity toward CO production with a maximum Faradaic efficiency of 91.3%and incredible partial current density up to 40 mA cm^(−2),outperforming most of the state-of-the-art Zn-based electrodes for CO_(2) reduction.The phenolphthalein color probe combined with in situ attenuated total reflection-infrared spectroscopy uncovered the formation of the localized pseudo-alkaline microenvironment at the interface of the Zn-ene/Cu-CM electrode.Theoretical calculations confirmed that the localized pH as the origin is responsible for the adsorption of CO_(2) at the interface and the generation of *COOH and *CO intermediates.This study offers valuable insights into developing efficient electrodes through synergistic regulation of reaction microenvironments and active sites,thereby facilitating the electrolysis of practical CO_(2) conversion.
基金supported by the National Key R&D Program of China(2022YFB3803700)National Natural Science Foundation of China(52171186)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)support from“Zhiyuan Honor Program”for doctoral students,Shanghai Jiao Tong University.
文摘Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.
基金supported by the National Natural Science Foundation of China(Nos.42305147 and 42405138)the Natural Science Foundation of Jiangsu Province(No.BK20230428).
文摘Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.
基金Supported by State Grid Corporation of China Science and Technology Project:Research on Key Technologies for Intelligent Carbon Metrology in Vehicle-to-Grid Interaction(Project Number:B3018524000Q).
文摘To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.
文摘Peroxymonosulfate(PMS)-assisted visible-light photocatalytic degradation of organic pollutants using graphitic carbon nitride(g-C_(3)N_(4))presents a promising and environmentally friendly approach.However,pristine g-C_(3)N_(4) suffers from limited visible-light absorption and low charge-carrier mobility.In this study,a phosphorus-doped tubular carbon nitride(5P-TCN)was synthesized via a precursor self-assembly method using phosphoric acid and melamine as raw materials,eliminating the need for organic solvents or templates.The 5P-TCN catalyst demonstrated enhanced visible-light absorption,improved charge transfer capability,and a 5.25-fold increase in specific surface area(31.092 m^(2)/g),which provided abundant active sites to efficiently drive the PMS-assisted photocatalytic reaction.The 5P-TCN/vis/PMS system exhibited exceptional degradation performance for organic pollutants across a broad pH range(3–9),achieving over 92%degradation of Rhodamine B(RhB)within 15 min.Notably,the system retained>98%RhB degradation efficiency after three consecutive operational cycles,demonstrating robust operational stability and reusability.Moreover,key parameters influencing,active radi-cals,degradation pathways,and potential mechanisms for RhB degradation were systematically investigated.This work proposes a green and cost-effective strategy for developing high-efficiency photocatalysts,while demon-strating the exceptional capability of a PMS-assisted photocatalytic system for rapid degradation of RhB.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the National Natural Science Foundation of China(Nos.22406081,22276086,22306086)the Natural Science Foundation of Jiangxi Province(No.20232BAB213029),all of which are greatly acknowledged by the authors.
文摘Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.
基金financial support of the National Natural Science Foundation of China(No.52472271)the National Key Research and Development Program of China(No.2023YFE0115800)。
文摘Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.