期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Eliminating active CO_(2) concentration in Carbon Capture and Storage(CCUS):Molten carbonate decarbonization through an insulation/diffusion membrane 被引量:4
1
作者 Gad Licht Ethan Peltier +1 位作者 Simon Gee Stuart Licht 《DeCarbon》 2025年第1期71-79,共9页
Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here ... Present industrial decarbonization technologies require an active CO_(2)-concentration system,often based on lime reaction or amine binding reactions,which is energy intensive and carries a high CO_(2)-footprint.Here instead,an effective process without active CO_(2)concentration is demonstrated in a new process-termed IC2CNT(Insulationdiffusion facilitated CO_(2) to Carbon Nanomaterial Technology)decarbonization process.Molten carbonates such as Li_(2)CO_(3)(mp 723℃)are highly insoluble to industrial feed gas principal components(N2,O_(2),and H2O).However,CO_(2) can readily dissolve and react in molten carbonates.We have recently characterized high CO_(2) diffusion rates through porous aluminosilicate and calcium-magnesium silicate thermal insulations.Here,the CO_(2) in ambient feed gas passes through these membranes into molten Li_(2)CO_(3).The membrane also concurrently insulates the feed gas from the hot molten carbonate chamber,obviating the need to heat the(non-CO_(2))majority of the feed gas to high temperature.In this insulation facilitated decarbonization process CO_(2)is split by electrolysis in the molten carbonate producing sequestered,high-purity carbon nanomaterials(such as CNTs)and O_(2). 展开更多
关键词 carbon CCUS(carbon Capture Utilization Storage) carbon nanomaterials carbon dioxide electrolysis Molten carbonate Greenhouse gas mitigation
在线阅读 下载PDF
High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture,Utilization,and Storage(CCUS)Applications 被引量:1
2
作者 Lin Du Yao-Yu Xiao +2 位作者 Zhi-Chao Jiang Hongbo Zeng Huazhou Li 《Engineering》 2025年第5期128-140,共13页
CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir... CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications. 展开更多
关键词 carbon capture utilization and storage Profile control Dispersed particle gel Double-network hydrogel Irreversible swelling
在线阅读 下载PDF
Industrial scaling of molten carbonate electrolytic carbon capture and production of graphene allotropes
3
作者 Kyle Hofstetter Gad Licht Stuart Licht 《DeCarbon》 2025年第3期44-53,共10页
The discovery,advances,and industrial-scale up of a unique electrochemical decarbonization chemistry,which sequesters carbon dioxide to mitigate the existential threat of planetary climate change,are presented.C2CNT■... The discovery,advances,and industrial-scale up of a unique electrochemical decarbonization chemistry,which sequesters carbon dioxide to mitigate the existential threat of planetary climate change,are presented.C2CNT■(CO_(2) to Carbon NanoTechnology)is the transition metal nucleated electrolytic splitting of CO_(2) by its trans-formation into a wide range of Graphene NanoCarbon allotropes,C_(GNC),CO_(2)→C_(GNC)+O_(2),such as carbon nanotubes and carbon nano-onions.The original 2015 C2CNT 0.0005 m2 electrode process has been scaled to larger than meter-square area electrodes and used in a series of 100 tonne annual CO_(2) removal industrial Genesis Device modules.The pathway to a further scale-up to a series of 1000 tonne decarbonization placed in series and forming a megaton annual C2CNT decarbonization plant is illustrated. 展开更多
关键词 carbon CCUS(carbon capture utilization storage) carbon nanomaterials carbon dioxide electrolysis Molten carbonate Greenhouse gas mitigation
在线阅读 下载PDF
A simulation study of biogeochemical interactions in cyclic underground bio-methanation of carbon dioxide and hydrogen
4
作者 WU Lin HOU Zhengmeng +1 位作者 ZHANG Liehui LüDDEKE Truitt Christian 《Petroleum Exploration and Development》 2025年第4期1102-1112,共11页
A coupled PHREEQC-MATLAB simulation approach is proposed to investigate the dynamic changes in rock porosity,gas storage capacity,formation water salinity,and reservoir temperature driven by biogeochemical interaction... A coupled PHREEQC-MATLAB simulation approach is proposed to investigate the dynamic changes in rock porosity,gas storage capacity,formation water salinity,and reservoir temperature driven by biogeochemical interactions during cyclic underground bio-methanation(UBM)of CO_(2)and H_(2),and to quantitatively examine how the evolution of these parameters influences CH_(4)production efficiency.The results indicate that during the cyclic UBM of CO_(2)-H_(2),the formation water undergoes a dynamic acid-base alternation,leading to periodic mineral dissolution and precipitation with limited impact on rock porosity.Across different mineral systems,the maximum CH_(4)production rate remains consistently around 3.6×10^(−3)mol/(L·d)in each cycle.With an increasing number of cycles,under high initial salinity conditions,the metabolic water produced by methanogens can significantly reduce the formation water salinity,gradually enhancing the CH_(4)production rate to levels comparable with those under low initial salinity.Additionally,the increased volume of produced water reduces the gas storage capacity of the reservoir.This reduction becomes more pronounced at higher initial CO_(2)-H_(2)pressures,accompanied by a more significant increase in CH_(4)production rate increment.Furthermore,the heat generated by methanogen metabolism leads to an increase in reservoir temperature,with the extent of temperature rise significantly influenced by heat loss.If the heat loss is neglected,the reservoir temperature can increase by up to 17.1℃after five cycles(10 years).When the reservoir has a higher initial temperature,the elevated thermal conditions may reduce CH_(4)production efficiency. 展开更多
关键词 underground bio-methanation biogeochemical interaction carbon circular utilization gas storage capacity CH_(4)production efficiency
在线阅读 下载PDF
Carbon Capture,Utilization,and Storage—Review Investigating the Synergistic Impact of CCUS-EOR
5
作者 Zhenhua Rui Tingting Liu +3 位作者 Xin Wen Siwei Meng Yang Li Birol Dindoruk 《Engineering》 2025年第5期16-40,共25页
Carbon capture,utilization,and storage(CCUS)represents a critical technological pathway for global car-bon emission reduction.CCUS-enhanced oil recovery(EOR)technology is the most feasible CCUS technol-ogy demonstrati... Carbon capture,utilization,and storage(CCUS)represents a critical technological pathway for global car-bon emission reduction.CCUS-enhanced oil recovery(EOR)technology is the most feasible CCUS technol-ogy demonstrating dual benefits of enhanced energy production and carbon reduction.This study comprehensively described the key influencing factors governing CO_(2)-EOR and geological storage and systematically analyzed reservoir properties,fluid characteristics,and operational parameters.The mech-anisms of these parameters on EOR versus CO_(2) storage performance were investigated throughout CCUS-EOR processes.This paper proposes a coupled two-stage CCUS-EOR process:CO_(2)-EOR storage stage and long-term CO_(2) storage stage after the CO_(2) injection phase is completed.In each stage,the main control factors impacting the CO_(2)-EOR and storage stages are screened and coupled with rigorous technical anal-ysis.The key factors here are reservoir properties,fluid characteristics,and operational parameter.A novel CCUS-EOR synergistic method was proposed to optimize the lifecycle performance of dual objective of EOR and storage.Furthermore,based on multi-objective optimization,considering the lifecycle,a multi-scale techno-economic evaluation method was proposed to fully assess the CCUS-EOR project per-formance.Finally,a set of recommendations for advancing CCUS-EOR technologies by deploying multi-factor/multi-field coupling methodologies,novel green intelligent injection materials,and artificial intel-ligence/machine learning technologies were visited. 展开更多
关键词 carbon capture utilization and storage(CCUS) CCUS-enhanced oil recovery(EOR) CO_(2)-EOR Synergistic mechanisms Multi-factor coupling analysis
在线阅读 下载PDF
CO_(2) valorization to amides via S-scheme photocatalysis with tandem carbonylation
6
作者 Weikang Wang Lele Wang Qinqin Liu 《Chinese Journal of Structural Chemistry》 2025年第12期3-5,共3页
With global carbon emissions continuing to rise,carbon dioxide(CO_(2))capture and resource utilization have become central challenges in achieving the“dual carbon”goals(carbon peak and carbon neutrality).Traditional... With global carbon emissions continuing to rise,carbon dioxide(CO_(2))capture and resource utilization have become central challenges in achieving the“dual carbon”goals(carbon peak and carbon neutrality).Traditional carbon capture and storage(CCS)technology can only temporarily sequester CO_(2),whereas emerging green catalytic technologies(photo/electro/thermal catalysis)enable the conversion of CO_(2) into high-value chemicals(e.g.,fuels,pharmaceutical intermediates),advancing the closure of the artificial carbon cycle[1,2]. 展开更多
关键词 green catalytic technologies photo electro thermal carbon capture resource utilization carbon capture storage ccs technology tandem carbonylation carbon emissions carbon neutrality traditional intermediates advancing closure artificial c CO valorization
原文传递
Technical Perspective of Carbon Capture,Utilization,and Storage 被引量:24
7
作者 Qingyang Lin Xiao Zhang +2 位作者 Tao Wang Chenghang Zheng Xiang Gao 《Engineering》 SCIE EI CAS 2022年第7期27-32,共6页
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo... Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details. 展开更多
关键词 CCUS carbon capture carbon utilization carbon storage Chemical absorption Electrochemical conversion Storage mechanism
在线阅读 下载PDF
Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO_2 and methanol 被引量:16
8
作者 Keng Xuan Yanfeng Pu +3 位作者 Feng Li Jing Luo Ning Zhao Fukui Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期553-566,M0004,共15页
A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonat... A series of metal-organic frameworks MOF-808-X(6-connected)were synthesized by regulating the ZrOCl2·8H2O/1,3,5-benzenetricarboxylic acid(BTC)molar ratio(X)and tested for the direct synthesis of dimethyl carbonate(DMC)from CO2 and CH3OH with 1,1,1-trimethoxymethane(TMM)as a dehydrating agent.The effect of the ZrOCl2·8H2O/BTC molar ratio on the physicochemical properties and catalytic performance of MOF-808-X was investigated.Results showed that a proper ZrOCl2·8H2O/BTC molar ratio during MOF-808-X synthesis was fairly important to reduce the redundant BTC or zirconium clusters trapped in the micropores of MOF-808-X.MOF-808-4,with almost no redundant BTC or zirconium clusters trapped in the micropores,exhibited the largest surface area,micropore size,and the number of acidic-basic sites,and consequently showed the best activity among all MOF-808-X,with the highest DMC yield of 21.5% under the optimal reaction conditions.Moreover,benefiting from the larger micropore size,MOF-808-4 outperformed our previously reported UiO-66-24(12-connected),which had even more acidic-basic sites and larger surface area than MOF-808-4,mainly because the larger micropore size of MOF-808-4 provided higher accessibility for the reactant to the active sites located in the micropores.Furthermore,a possible reaction mechanism over MOF-808-4 was proposed based on the in situ FT-IR results.The effects of different reaction parameters on DMC formation and the reusability of MOF-808-X were also studied. 展开更多
关键词 Metal-organic frameworks MOF-808 Micropore size carbon dioxide utilization Dimethyl carbonate
在线阅读 下载PDF
Prospects for green steelmaking technology with low carbon emissions in China 被引量:12
9
作者 Zhang Fucheng Hong Lukuo Xu Ying 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期1-24,共24页
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu... The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology. 展开更多
关键词 carbon capture and utilization carbon emission hydrogen metallurgy low-carbon technology steel industry
在线阅读 下载PDF
Conversion of carbon dioxide to valuable petrochemicals:An approach to clean development mechanism 被引量:9
10
作者 Farnaz Tahriri Zangeneh Saeed Sahebdelfar Maryam Takht Ravanchi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期219-231,共13页
The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon s... The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea. The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases, modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts. 展开更多
关键词 carbon dioxide utilization C1 chemistry clean development mechanism CATALYSIS greenhouse effects
在线阅读 下载PDF
Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer 被引量:7
11
作者 Hongtao Hang Yanyou WU 《Acta Geochimica》 EI CAS CSCD 2016年第2期130-147,共18页
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plant... The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (COe and HCO3-) by plants. The net photosynthetic COa assimilation (PN), the photosynthetic assimilation of CO2 and bicarbonate (PN'), the proportion of increased leaf area (lEA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (B j) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among PN, PN' and fLA. PN', not PN, changed synchronously with fLA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31% at 15 mm bicarbonate, respectively. Meanwhile, the propor- tions of exogenous bicarbonate and total bicarbonate uti- lised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11% and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants. 展开更多
关键词 KARST Bicarbonate - Photosynthesis -Inorganic carbonic utilization Stable carbon isotopecomposition
在线阅读 下载PDF
Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China 被引量:5
12
作者 Rui-Cheng Wang Hong-Mei Wang +3 位作者 Xing Xiang Yu Gao Qing-Wei Song Lin-Feng Gong 《Journal of Earth Science》 SCIE CAS CSCD 2018年第4期969-976,共8页
To investigate the microbial utilization of organic carbon in peatland ecosystem, water samples were collected from the Dajiuhu Peatland and nearby lakes, central China across the year of 2014. The acridine orange (A... To investigate the microbial utilization of organic carbon in peatland ecosystem, water samples were collected from the Dajiuhu Peatland and nearby lakes, central China across the year of 2014. The acridine orange (AO) staining and Biolog Eco microplates were used to numerate microbial counts and determine the carbon utilization of microbial communities. Meanwhile, physicochemical characteristics were measured for subsequent analysis of the correlation between microbial carbon utilization and environmental factors. Results indicated that total microbial counts were between 106107 cells/L. Microbial diversities and carbon utilization rates showed a similar pattern, highest in September and lowest in November. Microbial communities in the peat pore waters preferred to utilize N-bearing carbon sources such as amines and amino acids compared with microbial communities in lakes. The network analysis of microbial utilization of 31 carbon substrates clearly distinguished microbial communities from peat pore waters and those from lakes. Redundancy analysis (RDA) showed the total organic nitrogen content (P=-0.03, F=2.5) and daily average temperature (P=0.034, F=2.4) significantly controlled microbial carbon utilization throughout the sampling period. Our report is the first one to address the temporal and spatial variations of carbon uti- lization of microbial communities which are closely related to the decomposition of organic matter in the Dajiuhu Peatland in context of climate warming. 展开更多
关键词 carbon source microbial carbon utilization average temperature Dajiuhu Peatland.
原文传递
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:13
13
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience carbon reduction technologies carbon neutrality Energy transition Underground energy storage carbon capture utilization and storage(CCUS)
原文传递
Effects of carbon anhydrase on utilization of bicarbonate in microalgae:a case study in Lake Hongfeng 被引量:4
14
作者 Haitao Li Yanyou Wu Lihua Zhao 《Acta Geochimica》 EI CAS CSCD 2018年第4期519-525,共7页
A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding ... A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding equal concentrations of NaH13CO3 with different 613C values simultaneously. The inorganic carbon sources were quantified according to the stable carbon isotope composition in the treated microalgae. The effects of extracellular carbonic anhydrase (CAex) on the HCO3 and CO2 utilization pathways were distinguished using acetazolamide, a potent membrane-impermeable carbonic anhydrase inhibitor. The results show utilization of the added HCO3- was only 8% of the total carbon sources in karst lake. The proportion of the HCO3- utilization path- way was 52% of total inorganic carbon assimilation. Therefore, in the natural water of the karst area, the microalgae used less bicarbonate that preexisted in the aqueous medium than CO2 derived from the atmosphere. CAex increased the utilization of inorganic carbon from the atmosphere. The microalgae with CAex had greater carbon sequestration capacity in this karst area. 展开更多
关键词 MICROALGAE carbonic anhydrase Stable carbon isotope Inorganic carbon utilization
在线阅读 下载PDF
Bicarbonate use and carbon dioxide concentrating mechanisms in photosynthetic organisms 被引量:2
15
作者 Yanyou Wu 《Acta Geochimica》 EI CAS CSCD 2021年第5期846-853,共8页
Photosynthesis is crucial to the reduction of carbon dioxide in the atmosphere.The key enzyme of photosynthesis,Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco),has two mutably competing substrates,CO2 and O2.... Photosynthesis is crucial to the reduction of carbon dioxide in the atmosphere.The key enzyme of photosynthesis,Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco),has two mutably competing substrates,CO2 and O2.It has features of carboxylase and oxygenase.Rubisco performs the function of carboxylase to reduce inorganic carbon to form organic substances,which precondition is that more carbon dioxide accumulates around it.Carbon dioxide concentrating mechanisms(CCMs)are vital to cope with the limit of carbon dioxide.Various bicarbonate use pathway has a differential contribution to inorganic carbon assimilation.Bicarbonate transport,extracellular bicarbonate dehydration,or H+-ATPase-driven bicarbonate uptake,which induced CCMs,can support a considerable share of photosynthesis in photosynthetic organisms.However,CCMs in thylakoid membranes may be the most important.The CCMs occurred in the plasma membrane were secondary,evolutionary,and inducible,while CCMs coupled with photosynthetic oxygen evolution in thylakoid membranes,were primitive,major,and indispensable.A hypothetical schematic model of CCMs occurred in the plasma membrane and thylakoid membranes being proposed. 展开更多
关键词 Bicarbonate photolysis Inorganic carbon utilization Plasma membrane PHOTOSYNTHESIS Thylakoid membranes
在线阅读 下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model 被引量:2
16
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 carbonATE carbon capture utilization and storage(CCUS) Jet fracturing Coupled model Geothermal reservoir
原文传递
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:6
17
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
在线阅读 下载PDF
Investigation of the role of Ca(OH)2 in the catalytic Alkaline Thermal Treatment of cellulose to produce H2 with integrated carbon capture 被引量:1
18
作者 Maxim R.Stonor Nicholas Ouassil +1 位作者 Jingguang G.Chen Ah-Hyung Alissa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期984-1000,共17页
The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a ca... The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a carbon-neutral process that has the potential to be carbon-negative.This study has shown that the conversion of cellulose tosuppressedcan be achieved through the reforming of gaseous intermediates in a fixed bed of 10%Ni/ZrO2.Reforming occurs at low temperatures≤773 K,which could allow for improved sustainability. 展开更多
关键词 Hydrogen Biomass Alkaline Thermal Treatment Calcium hydroxide Calcium carbonate carbon capture utilization storage Nickel Heterogeneous catalysis Catalytic reforming
在线阅读 下载PDF
Differences in carbon source usage by dental plaque in children with and without early childhood caries 被引量:1
19
作者 yan zhao wen-jie zhong +4 位作者 zhe xun qian zhang ye-qing song yun-song liu feng chen 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第4期232-237,共6页
Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provi... Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral micmbiomes, further comprehension of this microbial community's ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities. 展开更多
关键词 Biolog assay carbon source utilization early childhood caries microbial community
暂未订购
Facile CO_(2)diffusion for decarbonization through thermal insulation membranes 被引量:2
20
作者 Gad Licht Ethan Peltier +1 位作者 Simon Gee Stuart Licht 《DeCarbon》 2024年第3期85-96,共12页
It is hypothesized and demonstrated that thermal insulation membranes can provide an effective barrier to heat flow and simultaneously facilitate effective CO_(2)diffusion.Decarbonization technology often requires a C... It is hypothesized and demonstrated that thermal insulation membranes can provide an effective barrier to heat flow and simultaneously facilitate effective CO_(2)diffusion.Decarbonization technology often requires a CO_(2)concentration system,often based on amine binding or lime reaction,which is energy intensive and carries a high carbon footprint.Alternatively,C2CNT electrolytic molten carbonate decarbonization does not require CO_(2)pre-concentration and also provides a useful product(graphene nanocarbons)from the captured CO_(2).Here,a method of effective CO_(2)diffusion is demonstrated that simultaneously thermally insulates the decarbonization source gas from the high-temperature C2CNT system.Open pore,low-density,thermal insulations are implemented as membranes that facilitate effective CO_(2)diffusion for high-temperature decarbonization.Selected,high-temperature,strongly thermal insulating,silica composites are measured with porosities,,exceeding 0.9(>90%porosity),and which display,as measured by SEM,large open channels facilitating CO_(2)diffusion.A derived and experimentally verified estimate for the CO_(2)diffusion constant through these membranes is DM-porous=ε^(3/2)DCO_(2),where DCO_(2)is the diffusion constant in air.DM-porous is applicable to a wide-range of CO_(2)concentrations both in the air and N2.The CO_(2)diffusion constant is translated to the equivalent decarbonization system mole influx of CO_(2)and shown capable of sustaining high rates of CO_(2)removal.Combined with the strong electrolyte affinity for CO_(2)compared to N_(2),O_(2),or H_(2)O,the system comprises a framework for decarbonization without pre-concentration of CO_(2). 展开更多
关键词 carbon CCUS(carbon Capture Utilization Storage) carbon nanomaterials carbon dioxide electrolysis Molten carbonate Greenhouse gas mitigation
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部