Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid p...Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.展开更多
AIM: The aim of the work is to study the pyrolysis characteristics of Radix Rhizoma Rhei, Cortex Moudan Radicis, and Radix Sanguisorbae in an inert atmosphere of argon (Ar), and to investigate the mechanism of the ...AIM: The aim of the work is to study the pyrolysis characteristics of Radix Rhizoma Rhei, Cortex Moudan Radicis, and Radix Sanguisorbae in an inert atmosphere of argon (Ar), and to investigate the mechanism of the carbonizing process of the three traditional Chinese herbs. METHODS: The pyrolysis characteristics of the crude materials and their extracts were studied by thermogravimetry-mass spectrometry (TG-MS) in a carrier gas of argon, coupled with Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) methods. Correlation of the pyrolysis behaviors with the carbonizing process by stir-frying of traditional Chinese medicines was made. RESULTS: Within the temperature range of 200-300 ℃, which is the testing range for the study of the carbonizing process of Chinese herbs, the temperatures indicated by the maximum weight loss rate peak of the above three extracts were taken as the upper-limit temperatures of the carbonizing process of the herbs, and which were 200, 240 and 247 ℃ for Radix Rhizoma Rhei, Cortex Moudan Radicis, and Radix Sanguisorbae, respectively. The ion monitoring signal peaks detected by the TG-MS method corresponded with reports that the level of chemical components of traditional Chinese medicinal materials would decrease after the carbonizing process. It was confirmed by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) methods that better results of "medicinal property preservation" could be obtained by heating at 200 ℃ for Radix Rhizoma Rhei, at about 250 ℃ for Cortex Moudan Radicis, and Radix Sanguisorbae, as the relative intensity values of the common peaks were among the middle of their three carbonized samples by programmed heating. CONCLUSION: The upper-limit temperatures of the carbonizing process for Radix Rhizoma Rhei, Cortex Moudan Radicis and Radix Sanguisorbae were 200, 240 and 247 ℃ respectively. It is feasible to research the mechanism and technology of the carbonizing process of traditional Chinese medicinal materials using thermogravimetry, Fourier transform infrared spectrometry, and scanning electron microscopy methods.展开更多
Much attention has been paid for the synthesis of dimethyl carbonate(DMC) by urea indirect alcoholysis method, which had not been actually industrialized by now. The rigorous full process model was then necessary to o...Much attention has been paid for the synthesis of dimethyl carbonate(DMC) by urea indirect alcoholysis method, which had not been actually industrialized by now. The rigorous full process model was then necessary to optimize the process with heat integration. In this paper, a full process was designed and optimized for the DMC synthesis by urea indirect alcoholysis method based on Aspen Plus software.The technological analysis was developed to find how the process was influenced by the three main recycled materials of methanol, 1,2-propylene glycol(PG) and mixture of DMC–methanol. Simultaneously,the thermal optimization was taken into account for energy saving and the optimized process was proposed with heat integration. Moreover, the economic evaluation was implemented for the optimized process with total annualized cost(TAC) and cost of product(COP) according to the plant investment and operations. It was found that the 11.6% decrease in TAC was obtained for the optimized process compared to the original designed process. The COP analysis showed that the process was economically efficient for the production of DMC from urea and methanol.展开更多
Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infi...Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.展开更多
Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of s...Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.展开更多
The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate ut...The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate (NUR) batch tests. It is shown that the denitrification potential can be substantially increased with the addition of three external carbon sources, i.e. methanol, ethanol, and acetate, and the denitrification rates of ethanol, acetate, and methanol reached up to 9.6, 12, and 3.2 mgN/(g VSS.h), respectively, while that of starch wastewater was only 0.74 mgN/(g VSS,h). By comparison, ethanol was found to be the best external carbon source. NUR batch tests with starch wastewater and waste ethanol were carried out. The denitfification potential increased from 5.6 to 16.5 mg NO3-N/L owing to waste ethanol addition. By means of NUR tests, the wastewater characteristics and kinetic parameters can be estimated, which are used to determine the denitrification potential of wastewater, to calculate the denitrification potential of the plant and to predict the nitrate effluent quality, as well as provide information for developing carbon dosage control strategy.展开更多
The stretch formability of a low carbon steel processed by friction stir processing (FSP) was studied under biaxial loading condition applied by a miniaturized Erichsen test. One-pass FSP decreased the ferritic grai...The stretch formability of a low carbon steel processed by friction stir processing (FSP) was studied under biaxial loading condition applied by a miniaturized Erichsen test. One-pass FSP decreased the ferritic grain size in the processed zone from 25 μm to about 3 μm, which also caused a remarkable increase in strength values without considerable decrease in formability under uniaxial loading. A coarse-grained (CG) sample before FSP reflected a moderate formability with an Erichsen index (EI) of 2.73 mm. FSP slightly decreased the stretch formability of the sample to 2.66 ram. However, FSP increased the required punch load (FEI) due to the increased strength by grain refinement. FSP reduced considerably the roughness of the free surface of the biaxial stretched samples with reduced orange peel effect. The average roughness value (Ra) decreased from 2.90 in the CG sample down to about 0.65 μm in fine-grained (FG) sample after FSP. It can be concluded that the FG microstructure in low carbon steels sheets or plates used generally in shipbuilding provides a good balance between strength and formability.展开更多
During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH)...During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process(process-Ⅰ), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition(process-Ⅱ). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-Ⅰ than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-Ⅰ were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-Ⅰ at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-Ⅰ was more beneficial for improving the cleanliness of molten steel.展开更多
Through the process analysis of cold chain logistics of agricultural products,we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent.We apply t...Through the process analysis of cold chain logistics of agricultural products,we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent.We apply the development idea of low-carbon economy,introduce the thirdparty logistics companies,establish distribution center of cold chain logistics of agricultural products,and strengthen information sharing,to reengineer the process of cold chain logistics of agricultural products in China.The results show that applying low-carbon economy to process reengineering of cold chain logistics of agricultural products,has advantages of increasing added value of products,promoting scale merit and abating lag,plays a role in promoting emission reduction,high efficiency and environmental protection in the process of cold chain logistics of agricultural products in China.展开更多
Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains...Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies.展开更多
Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated ...Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness measurements. Equiaxed ferrite grains were refined from 400 to 150 nm, and the cementite lamellae were fully spheroidized, with a decrease of the particle diameter from 150 to 100 nm as the impact times increased. The cementite dissolution was enhanced significantly. Correspondingly, the lattice parameter of α-Fe and microhard- hess increased with the impact times.展开更多
Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas...Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively.展开更多
Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossb...Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossbauer spectra,Raman spectra,SEM,TEM,BET,O2-TPO,galvano charge-discharge,CV and EIS were applied to investigate the phase composition,carbon content,morphological structure and electrochemical performance of the synthesized samples.The effect of introducing way of carbon sources on the properties and performance of LiFePO4/C/graphene composite was paid special attention.Under optimized synthetic conditions,highly crystalized olivine-type LiFePO4was successfully obtained with electron conductive Fe2P and FeP as the main impurity phases.SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO4 with respect to graphene,while the glucosederived carbon mainly coated over LiFeP04 particles which effectively connected the graphene sheets and LiFePO4 particles to result in a more efficient charge transfer process.As a result,favorable electrochemical performance was achieved.The performance of the amorphous carbon-graphene co-modified LiFePO4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specificcapacity as high as 97 mAh·g-1 at 10 C rate.展开更多
Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th...Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.展开更多
Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potent...Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potential applications. In this article, a heterojunction of CN and sulfur-doped CN (CNS) was constructed through a solution-based processing way. Interestingly, it was observed that the photocatalytic hydrogen production of the as-prepared composite was 32.6 times higher than that of bulk carbon nitride and 2.3 times higher than that of the composites by conventional impregnating method. This study opens a new avenue to construct heterojunction of CN for large-scale industrial applications in environmental remediation.展开更多
The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forg...In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value.展开更多
Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inc...Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inconsistencies between energy-saving and environmental conservation,a uniform way of reporting the information and classification was presented. Based on the establishment of carbon footprint( CFP) for machine tools operation,carbon footprint per kilogram( CFK) was proposed as the normalized index to evaluate the machining process.Furthermore,a classification approach was developed as a tracking and analyzing system for the machining process. In addition,a case study was also used to illustrate the validity of the methodology. The results show that the approach is reasonable and feasible for machining process evaluation,which provides a reliable reference to the optimization measures for low carbon manufacturing.展开更多
The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperatu...The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature. The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation. The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region. The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.展开更多
基金supported by the National Grand Water Project(No.2008ZX07423-002)the National Natural Science Foundation of China(No.50978170)the Guangdong Provincial Funding(No.2012B030800001)
文摘Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.
文摘AIM: The aim of the work is to study the pyrolysis characteristics of Radix Rhizoma Rhei, Cortex Moudan Radicis, and Radix Sanguisorbae in an inert atmosphere of argon (Ar), and to investigate the mechanism of the carbonizing process of the three traditional Chinese herbs. METHODS: The pyrolysis characteristics of the crude materials and their extracts were studied by thermogravimetry-mass spectrometry (TG-MS) in a carrier gas of argon, coupled with Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) methods. Correlation of the pyrolysis behaviors with the carbonizing process by stir-frying of traditional Chinese medicines was made. RESULTS: Within the temperature range of 200-300 ℃, which is the testing range for the study of the carbonizing process of Chinese herbs, the temperatures indicated by the maximum weight loss rate peak of the above three extracts were taken as the upper-limit temperatures of the carbonizing process of the herbs, and which were 200, 240 and 247 ℃ for Radix Rhizoma Rhei, Cortex Moudan Radicis, and Radix Sanguisorbae, respectively. The ion monitoring signal peaks detected by the TG-MS method corresponded with reports that the level of chemical components of traditional Chinese medicinal materials would decrease after the carbonizing process. It was confirmed by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) methods that better results of "medicinal property preservation" could be obtained by heating at 200 ℃ for Radix Rhizoma Rhei, at about 250 ℃ for Cortex Moudan Radicis, and Radix Sanguisorbae, as the relative intensity values of the common peaks were among the middle of their three carbonized samples by programmed heating. CONCLUSION: The upper-limit temperatures of the carbonizing process for Radix Rhizoma Rhei, Cortex Moudan Radicis and Radix Sanguisorbae were 200, 240 and 247 ℃ respectively. It is feasible to research the mechanism and technology of the carbonizing process of traditional Chinese medicinal materials using thermogravimetry, Fourier transform infrared spectrometry, and scanning electron microscopy methods.
基金Supported by the Science Foundation for Young Scientists of Shanxi Province,China(201701D221052)Natural Science Foundation of Shanxi Province(201601D102006)the Key Science and Technology Program of Shanxi Province,China(MD2014-09,MD2014-10)
文摘Much attention has been paid for the synthesis of dimethyl carbonate(DMC) by urea indirect alcoholysis method, which had not been actually industrialized by now. The rigorous full process model was then necessary to optimize the process with heat integration. In this paper, a full process was designed and optimized for the DMC synthesis by urea indirect alcoholysis method based on Aspen Plus software.The technological analysis was developed to find how the process was influenced by the three main recycled materials of methanol, 1,2-propylene glycol(PG) and mixture of DMC–methanol. Simultaneously,the thermal optimization was taken into account for energy saving and the optimized process was proposed with heat integration. Moreover, the economic evaluation was implemented for the optimized process with total annualized cost(TAC) and cost of product(COP) according to the plant investment and operations. It was found that the 11.6% decrease in TAC was obtained for the optimized process compared to the original designed process. The COP analysis showed that the process was economically efficient for the production of DMC from urea and methanol.
基金supported by the National Natural Science Foundation of China (Nos. 51271042 and 51501027)the Fundamental Research Funds for the Central Universities, the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)+1 种基金the Natural Science Foundation of Liaoning Province (No. 2014028013)China Postdoctoral Science Foundation (No. 2015M570246)
文摘Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.
基金Project supported by the Key International Cooperative Project of the National Natural Science Foundation of China (No. 50521140075)the Beijing Science and Technology Committee Match Project of "863" Plan(No. Z0005186040421)the Dr. Special Teaching and Research Funds for University (No. 20060005002)
文摘The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate (NUR) batch tests. It is shown that the denitrification potential can be substantially increased with the addition of three external carbon sources, i.e. methanol, ethanol, and acetate, and the denitrification rates of ethanol, acetate, and methanol reached up to 9.6, 12, and 3.2 mgN/(g VSS.h), respectively, while that of starch wastewater was only 0.74 mgN/(g VSS,h). By comparison, ethanol was found to be the best external carbon source. NUR batch tests with starch wastewater and waste ethanol were carried out. The denitfification potential increased from 5.6 to 16.5 mg NO3-N/L owing to waste ethanol addition. By means of NUR tests, the wastewater characteristics and kinetic parameters can be estimated, which are used to determine the denitrification potential of wastewater, to calculate the denitrification potential of the plant and to predict the nitrate effluent quality, as well as provide information for developing carbon dosage control strategy.
基金supported by “The World Academy of Sciences,Italy(TWAS)” under the Visiting Researchers Program of TWASUNESCO Associateship Scheme(Ref.3240260896)
文摘The stretch formability of a low carbon steel processed by friction stir processing (FSP) was studied under biaxial loading condition applied by a miniaturized Erichsen test. One-pass FSP decreased the ferritic grain size in the processed zone from 25 μm to about 3 μm, which also caused a remarkable increase in strength values without considerable decrease in formability under uniaxial loading. A coarse-grained (CG) sample before FSP reflected a moderate formability with an Erichsen index (EI) of 2.73 mm. FSP slightly decreased the stretch formability of the sample to 2.66 ram. However, FSP increased the required punch load (FEI) due to the increased strength by grain refinement. FSP reduced considerably the roughness of the free surface of the biaxial stretched samples with reduced orange peel effect. The average roughness value (Ra) decreased from 2.90 in the CG sample down to about 0.65 μm in fine-grained (FG) sample after FSP. It can be concluded that the FG microstructure in low carbon steels sheets or plates used generally in shipbuilding provides a good balance between strength and formability.
基金financially supported by the National Natural Science Foundation of China (No.51404022)
文摘During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process(process-Ⅰ), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition(process-Ⅱ). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-Ⅰ than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-Ⅰ were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-Ⅰ at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-Ⅰ was more beneficial for improving the cleanliness of molten steel.
文摘Through the process analysis of cold chain logistics of agricultural products,we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent.We apply the development idea of low-carbon economy,introduce the thirdparty logistics companies,establish distribution center of cold chain logistics of agricultural products,and strengthen information sharing,to reengineer the process of cold chain logistics of agricultural products in China.The results show that applying low-carbon economy to process reengineering of cold chain logistics of agricultural products,has advantages of increasing added value of products,promoting scale merit and abating lag,plays a role in promoting emission reduction,high efficiency and environmental protection in the process of cold chain logistics of agricultural products in China.
基金Supported by Shanxi Scholarship Council of China (2015-123)the Natural Science Foundation of China (51602322)the Key Research and Development Program of Shanxi Province (International Cooperation) (201703D421041) for financial support
文摘Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies.
基金Sponsored by National Natural Science Foundation of China(50801021,51201061)Program for Young Key Teachers in Henan Province of China(2011GGJS-070)Program for Henan Province for Science and Technology Innovation Excellent Talents of China(144200510001)
文摘Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness measurements. Equiaxed ferrite grains were refined from 400 to 150 nm, and the cementite lamellae were fully spheroidized, with a decrease of the particle diameter from 150 to 100 nm as the impact times increased. The cementite dissolution was enhanced significantly. Correspondingly, the lattice parameter of α-Fe and microhard- hess increased with the impact times.
基金Funded by the National High Technology Research and Development Program(863 Program)(No.2013AA050905),China Academy of Engineering Physics,Mianyang,China
文摘Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.51025209)the National Nature Science Foundation of China(No.21103089)the Key Projects in Nature Science Foundation of Jiangsu Province(No.BK2011030)
文摘Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossbauer spectra,Raman spectra,SEM,TEM,BET,O2-TPO,galvano charge-discharge,CV and EIS were applied to investigate the phase composition,carbon content,morphological structure and electrochemical performance of the synthesized samples.The effect of introducing way of carbon sources on the properties and performance of LiFePO4/C/graphene composite was paid special attention.Under optimized synthetic conditions,highly crystalized olivine-type LiFePO4was successfully obtained with electron conductive Fe2P and FeP as the main impurity phases.SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO4 with respect to graphene,while the glucosederived carbon mainly coated over LiFeP04 particles which effectively connected the graphene sheets and LiFePO4 particles to result in a more efficient charge transfer process.As a result,favorable electrochemical performance was achieved.The performance of the amorphous carbon-graphene co-modified LiFePO4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specificcapacity as high as 97 mAh·g-1 at 10 C rate.
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
基金Funded by Shenyang City Application Basic Research Project (No. 1071198-1-00)
文摘Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.
基金financially supported in part by the National Natural Science Foundation of China(No. 21305065)Natural Science Foundation of Jiangsu Province(Nos. BK20160028, BK20170084)+1 种基金the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201703)the Fundamental Research Funds for the Central Universities
文摘Graphite-phase polymeric carbon nitride (CN) was reported to be a promising material in photoelectrochemical solar energy conversion. However, its high recombination rate of photogenerated carriers limits its potential applications. In this article, a heterojunction of CN and sulfur-doped CN (CNS) was constructed through a solution-based processing way. Interestingly, it was observed that the photocatalytic hydrogen production of the as-prepared composite was 32.6 times higher than that of bulk carbon nitride and 2.3 times higher than that of the composites by conventional impregnating method. This study opens a new avenue to construct heterojunction of CN for large-scale industrial applications in environmental remediation.
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
文摘In the present paper,controlled rolling and cooling processing was conducted by using a laboratory hot rolling mill.The influence of different processing parameters on the mechanical properties of low carbon cold forging steel was investigated.The results show that the faster cooling after the deformation (especially in low temperature rolling conditions) leads to the refinement of the ferrite grain.The specimen exhibits very good mechanical properties owing to the finer ferrite grains.The pearlite morphologies can also affect the mechanical properties of low carbon cold forging steel.The mechanical properties increase with decreasing final cooling temperature within the range from 650℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony.The mechanical properties of the specimens with fast cooling after the conventional rolling are not only better than those of the specimens with slow cooling after low temperature rolling,but also almost similar to those of the specimens with fast cooling after low temperature rolling.It is suggested that fast cooling after high temperature rolling (the conventional rolling) process would be of important industrial value.
基金National Science &Technology Pillar Program during the Twelfth Five-year Plan Period(No.2012BAF01B02)National Science and Technology Major Project of China(No.2012ZX04005031)
文摘Despite spending considerable effort on the development of manufacturing technology during the production process,manufacturing companies experience resources waste and worse ecological influences. To overcome the inconsistencies between energy-saving and environmental conservation,a uniform way of reporting the information and classification was presented. Based on the establishment of carbon footprint( CFP) for machine tools operation,carbon footprint per kilogram( CFK) was proposed as the normalized index to evaluate the machining process.Furthermore,a classification approach was developed as a tracking and analyzing system for the machining process. In addition,a case study was also used to illustrate the validity of the methodology. The results show that the approach is reasonable and feasible for machining process evaluation,which provides a reliable reference to the optimization measures for low carbon manufacturing.
基金the Education Bureau of Hubei Province of China(No.2002A01013)
文摘The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature. The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation. The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region. The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.