The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
CdS nanosheets(NSs)photocatalysts modified with dual earth‐abundant co‐catalysts of metallic carbon black(CB)and NiS2were synthesized by a two‐step solvothermal/impregnation method.Allthe experiment results demonst...CdS nanosheets(NSs)photocatalysts modified with dual earth‐abundant co‐catalysts of metallic carbon black(CB)and NiS2were synthesized by a two‐step solvothermal/impregnation method.Allthe experiment results demonstrated that the co‐loading of CB and NiS2could significantly enhance the photocatalytic H2‐evolution activity of CdS NSs.The photocatalytic performance of the as‐prepared CdS/CB/NiS2samples was tested under visible light(λ≥420nm)by using an aqueous solution containing0.25mol L–1Na2S‐Na2SO3as the sacrifice agent.The CdS‐0.5%CB‐1.0%NiS2composite photocatalysts exhibited the highest H2‐evolution rate of166.7μmol h?1,which was approximately5.16and1.87times higher than those of pure CdS NSs and CdS‐1.0%NiS2,respectively.The possible mechanism for the enhanced H2‐evolution activity of CdS/CB/NiS2composite photocatalysts was proposed.The results showed that the enhanced photocatalytic H2‐evolution activities could be ascribed to the co‐loading of metallic CB and NiS2as co‐catalysts onto the surface of CdS NSs.The excellent synergetic effect between the CB and NiS2could obviously improve visible light absorption,promote separation of photogenerated electron‐hole pairs and boost the H2‐evolution kinetics,thus leading to an enhanced activity for H2evolution.More interestingly,the metallic CB could not only act as a cocatalyst for H2evolution,but also serve as a conductive electron bridge to promote the charge migration.This work not only demonstrates that loading CB as a co‐catalyst is a promising strategy to further boost the photocatalytic activity of CdS/NiS2composites,but also offers a new mechanistic insight into the construction of highly efficient and stable CdS NSs‐based hybrid photocatalysts with dual earth‐abundant co‐catalysts for photocatalytic applications.展开更多
Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace r...Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.展开更多
In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated c...In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.展开更多
TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to es...TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.展开更多
Carbon dots(Cdots)with a broad light absorption range could be a potential stable sensitizer for TiO2,which is an excellent ultraviolet(UV)response photocatalyst.Herein,we systematically investigated the different col...Carbon dots(Cdots)with a broad light absorption range could be a potential stable sensitizer for TiO2,which is an excellent ultraviolet(UV)response photocatalyst.Herein,we systematically investigated the different color emissive Cdots-sensitized TiO2 for H2 production.Firstly,all kinds of Cdots enhanced the photocatalytic properties of TiO2.All the Cdots-sensitized TiO2 exhibits visible light H2 production due to their absorption in the visible light region.The photocurrent and H2 production amount display strong dependence on the light absorption range of Cdots.The blue-emissive Cdots endow the weak H2 production rate due to its weak absorption in the visible light.The enhanced photocatalytic activities are mainly contributed to the strong light absorbance and high-efficient charge separation.The light absorption of green-and red-emissive Cdots is another main factor for the high catalytic activities besides charge separation.展开更多
TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracyc...TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracycline hydrochloride contaminant. A series of characterizations was carried out to study the structure and composition of the synthesized TiO2-seashell composite. This material exhibits excellent solar light-driven photochemical activity in the decomposition of tetracycline hydrochloride. The possible pathway and mechanism for the photodegradation process were proposed on the basis of high-resolution electrospray ionization time-of-flight mass spectrometry experiments. Finally, we investigated the reusability of the TiO2-seashell composite. This study is expected to provide a new facile pathway for the application of ·CO3– radicals to degrade special organic pollutants in water.展开更多
A carbon‐doped TiO2/fly ash support(C‐TiO2/FAS)composite photocatalyst was successfully synthesized through sol impregnation and subsequent carbonization.The carbon dopants were derived from the organic species gene...A carbon‐doped TiO2/fly ash support(C‐TiO2/FAS)composite photocatalyst was successfully synthesized through sol impregnation and subsequent carbonization.The carbon dopants were derived from the organic species generated during the synthesis of the C‐TiO2/FAS composite.A series of analytical techniques,such as scanning electron microscopy(SEM),attenuated total reflection‐Fourier transform infrared(ATR‐FTIR)spectroscopy,X‐ray photoelectron spectroscopy(XPS),and ultraviolet‐visible diffuse reflectance spectroscopy(UV‐Vis DRS),were used to characterize the properties of the prepared samples.The results indicated that C‐TiO2 was successfully coated on the FAS surface.Coupling between C‐TiO2 and FAS resulted in the formation of Si–O–C and Al–O–Ti bonds at their interface.The formation of Si–O–C and Al–O–Ti bonds gave rise to a positive shift of the valence band edge of C‐TiO2 and enhanced its oxidation capability of photogenerated holes as well as photodegradation efficiency of methyl orange.Moreover,the C‐TiO2/FAS photocatalyst exhibited favorable reusability and separability.This work may provide a new route for tuning the electronic band structure of TiO2.展开更多
Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eet...Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eets with stable structure serve as the backbones, and carbon coating and few-layer MoS2 tightly adhere onto the surface of the TiO2. It needs to be pointed out that the carbon coating improves the overall electronic conductivity and the few-layer MoS2 facilitates the diffusion of lithium ions and offers more active sites for lithium-ion storage. As a result, when evaluated as lithium-ion battery anodes, the MoS2-C@TiO2 nanocomposites exhibit markedly enhanced lithium storage capability compared with pure TiO2. A high specific capacity of 180 mA.h.g-1 has been achieved during the preliminary cycles, and the specific capacity can maintain 160 mA.h.g-1 at a high current density of 1C (1C=167 mA.g-1) even after 300 discharge/ charge cycles, indicating the great potential of the MoS2- C@TiO2 on energy storage.展开更多
An efficient toluene removal in air using a plasma photocatalytic system(PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma,but also requires the photocatalysts to efficie...An efficient toluene removal in air using a plasma photocatalytic system(PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma,but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania(B-TiO2)photocatalyst with a dielectric barrier discharge(DBD) can effectively remove toluene with above 70% CO2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l-1,while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD,and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO2 in the plasma region also results in a high discharge efficiency,facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO2. The greatly enhanced performance of the PPS integrated with B-TiO2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-T...Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.展开更多
Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping ar...Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m^2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti^(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.展开更多
Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemi...Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemical performance.In this study,we developed a sacrificial-templating route to synthesize TiO_(2)@N-doped carbon nanotubes(TiO_(2)@NC-NTs)with excellent electrochemical performance.The asprepared mesoporous TiO_(2)@NC-NTs with tiny nanocrystals of anatase TiO_(2) wrapped in N-doped carbon layers showed a well-defined tube structure with a large specific surface area of 198 m^(2) g^(-1) and a large pore size of~5 nm.The TiO_(2)@NC-NTs delivered high reversible capacities of 158 m A h g^(-1) at 2 C(1 C=335 m A g^(-1))for 2200 cycles and 146 m A h g^(-1) at 5 C for 4000 cycles,as well as an ultrahigh rate capability of up to 40 C with a capacity of 98 m A h g^(-1).Even at a high current density of 10 C,a capacity of 138 m A h g^(-1) could be delivered over 10,000 cycles.Thus,the synthesis of mesoporous TiO_(2)@NC-NTs was demonstrated to be an efficient approach for developing electrode materials with high sodium storage and long cycle life.展开更多
Among the substantial amount of photocatalyst materials,TiO2 has been enthusiastically studied for a few decades due to its outstanding photocatalytic activity and stability.Recently,black TiO2 consisting of approxima...Among the substantial amount of photocatalyst materials,TiO2 has been enthusiastically studied for a few decades due to its outstanding photocatalytic activity and stability.Recently,black TiO2 consisting of approximately 2 nm of thin disorder layer around the surface showed surprisingly high solar hydrogen generation ability.The disorder layer of TiO2 can enhance its light absorption,charge separation,and surface reaction abilities,however exact fundamentals of photocatalytic water-splitting pathways are still ambiguous.Herein,recent progress and investigations on exact functions of disorder layer and its application in photocatalytic CO2 reduction will be discussed.Throughout the comprehensive studies on disorder layer of TiO2,disorder engineering on photocatalyst materials will suggest the further extension of developing solarfuel production technologies.展开更多
TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be ...TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34×10^3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89,88%, The catalyst was reused 6 times and its degradation efficiency hardly changed.展开更多
It has been demonstrated that the conductivity and electrochemical properties of TiO2 nanomate rials can be significantly improved by an incorporation of carbon additives.In the study,we develop a novel Ndoped TiO2 me...It has been demonstrated that the conductivity and electrochemical properties of TiO2 nanomate rials can be significantly improved by an incorporation of carbon additives.In the study,we develop a novel Ndoped TiO2 mesoporous nanostructure via the addition of carbon quantum dots(CQDs)solution following a scalable hydrothermal process.The as-made TiO2 product shows well-defined morphology,high conductivity,large surface area,and abundant mesopores.When evaluated as anodes for sodiumion batteries,the CQDs@TiO2 product annealed at 500℃exhibits a superior sodium storage capability.It delivers a high reversible capacity of 168.8 mAh/g at 100 mA/g over 500 cycles and long cycling stability.The remarkable performance of CQDs@TiO2 mainly arises from the large surface area and mesoporous architecture constructed by ultrathin TiO2 nanosheets,as well as the full coope ration between CQDs and TiO2.展开更多
The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modificatio...The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.展开更多
A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THS...A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.展开更多
TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nanocomposite may be a promising material for myoglobin immobilization in view of its high biocompatibilit...TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nanocomposite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of weU defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s^-1, was greatly facilitated in the TiO2/ MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.展开更多
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金supported by the National Natural Science Foundation of China(51672089)the Science and Technology Planning Project of Guangdong Province(2015B020215011)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)~~
文摘CdS nanosheets(NSs)photocatalysts modified with dual earth‐abundant co‐catalysts of metallic carbon black(CB)and NiS2were synthesized by a two‐step solvothermal/impregnation method.Allthe experiment results demonstrated that the co‐loading of CB and NiS2could significantly enhance the photocatalytic H2‐evolution activity of CdS NSs.The photocatalytic performance of the as‐prepared CdS/CB/NiS2samples was tested under visible light(λ≥420nm)by using an aqueous solution containing0.25mol L–1Na2S‐Na2SO3as the sacrifice agent.The CdS‐0.5%CB‐1.0%NiS2composite photocatalysts exhibited the highest H2‐evolution rate of166.7μmol h?1,which was approximately5.16and1.87times higher than those of pure CdS NSs and CdS‐1.0%NiS2,respectively.The possible mechanism for the enhanced H2‐evolution activity of CdS/CB/NiS2composite photocatalysts was proposed.The results showed that the enhanced photocatalytic H2‐evolution activities could be ascribed to the co‐loading of metallic CB and NiS2as co‐catalysts onto the surface of CdS NSs.The excellent synergetic effect between the CB and NiS2could obviously improve visible light absorption,promote separation of photogenerated electron‐hole pairs and boost the H2‐evolution kinetics,thus leading to an enhanced activity for H2evolution.More interestingly,the metallic CB could not only act as a cocatalyst for H2evolution,but also serve as a conductive electron bridge to promote the charge migration.This work not only demonstrates that loading CB as a co‐catalyst is a promising strategy to further boost the photocatalytic activity of CdS/NiS2composites,but also offers a new mechanistic insight into the construction of highly efficient and stable CdS NSs‐based hybrid photocatalysts with dual earth‐abundant co‐catalysts for photocatalytic applications.
基金the financial support provided by the National Natural Science Foundation of China(Nos.21277004,21190051,41121004)the Beijing Natural Science Foundation(No.8132035)+1 种基金the Fujitsu Laboratories Limited Foundation(No.k120400)the Special Fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control(2015)
文摘Ozone(O3) is an important atmospheric oxidant. Black carbon(BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere,leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS). Combined with ion chromatography(IC),DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2.Relative humidity or 254 nm UV(ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol(DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites.
基金Projects (50908096, 50908097) supported by the National Natural Science Foundation of ChinaProject (20100471251) supported by China Postdoctoral Science Foundation
文摘In order to develop the high photocatalytic activity of TiO2 under visible light as that under ultraviolet light and make it easy to be separated from treated liquor, a visible light response and spherical activated carbon (SAC) supported photocatalyst doped with upconversion luminescence agent Er3+:YAlO3 was prepared by immobilizing Er3+:YAlO3/TiO2, which was obtained by combination of Er3+:YAlO3 and TiO2 using sol-gel method, on the surface of SAC. The crystal phase composition, surface structure and element distribution, and light absorption of the new photocatalysts were examined by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS) analysis, scanning electron microscopy (SEM) and fluorescence spectra analysis (FSA). The photocatalytic oxidation activity of the photocatalysts was also evaluated by the photodegradation of methyl orange (MO) in aqueous solution under visible light irradiation from a LED lamp (λ400 nm). The results showed that Er3+:YAlO3 could perform as the upconversion luminescence agent which converts the visible light up to ultraviolet light. The Er3+:YAlO3/TiO2 calcinated at 700 °C revealed the highest photocatalytic activity. The apparent reaction rate constant could reach 0.0197 min-1 under visible light irradiation.
基金Project(50802034) supported by the National Natural Science Foundation of ChinaProject(11A093) supported by the Key Project Foundation by the Education Department of Hunan Province,China
文摘TiO2-coated activated carbon surface (TAs) composites were prepared by a sol-gel method with supercritical pretreatment. The photocatalytic degradation of acid yellow (AY) was investigated under UV radiation to estimate activity of catalysts and determine the kinetics. And the effects of parameters including the initial concentration of AY, light intensity and TiO2 content in catalysts were examined. The results indicate that TAs has a higher efficiency in decomposition of AY than P25, pure TiO2 particles as well as the mixture of TiO2 powder and active carbon. The photocatalytic degradation rate is found to follow the pseudo-first order kinetics with respect to the AY concentration. The new kinetic model fairly resembles the classic Langmuir-Hinshelwood equation, and the rate constant is proportional to the square root of the light intensity in a wide range. However, its absorption performance depends on the surface areas of catalysts. The model fits quite well with the experimental data and elucidates phenomena about the effects of the TiO2 content in TAs on the degradation rate.
基金financially supported by the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504)the National Natural Science Foundation of China (Nos. 21805004, 21671011, 21872001 and 51801006)+3 种基金Beijing Natural Science Foundation (No. KZ201710005002 and 2192005)the Natural Science Foundation of the Beijing Municipal Education Committee, China Postdoctoral Science Foundation (No. 2018M641133)Beijing Postdoctoral Research Foundation (No. 2018-ZZ-021)Chaoyang District Postdoctoral Research Foundation (No. 2018-ZZ-026)
文摘Carbon dots(Cdots)with a broad light absorption range could be a potential stable sensitizer for TiO2,which is an excellent ultraviolet(UV)response photocatalyst.Herein,we systematically investigated the different color emissive Cdots-sensitized TiO2 for H2 production.Firstly,all kinds of Cdots enhanced the photocatalytic properties of TiO2.All the Cdots-sensitized TiO2 exhibits visible light H2 production due to their absorption in the visible light region.The photocurrent and H2 production amount display strong dependence on the light absorption range of Cdots.The blue-emissive Cdots endow the weak H2 production rate due to its weak absorption in the visible light.The enhanced photocatalytic activities are mainly contributed to the strong light absorbance and high-efficient charge separation.The light absorption of green-and red-emissive Cdots is another main factor for the high catalytic activities besides charge separation.
文摘TiO2-seashell composites prepared via a sol-gel method were used to generate carbonate radicals(·CO3–) under solar light irradiation. ·CO3–, a selective radical, was employed to degrade the target tetracycline hydrochloride contaminant. A series of characterizations was carried out to study the structure and composition of the synthesized TiO2-seashell composite. This material exhibits excellent solar light-driven photochemical activity in the decomposition of tetracycline hydrochloride. The possible pathway and mechanism for the photodegradation process were proposed on the basis of high-resolution electrospray ionization time-of-flight mass spectrometry experiments. Finally, we investigated the reusability of the TiO2-seashell composite. This study is expected to provide a new facile pathway for the application of ·CO3– radicals to degrade special organic pollutants in water.
文摘A carbon‐doped TiO2/fly ash support(C‐TiO2/FAS)composite photocatalyst was successfully synthesized through sol impregnation and subsequent carbonization.The carbon dopants were derived from the organic species generated during the synthesis of the C‐TiO2/FAS composite.A series of analytical techniques,such as scanning electron microscopy(SEM),attenuated total reflection‐Fourier transform infrared(ATR‐FTIR)spectroscopy,X‐ray photoelectron spectroscopy(XPS),and ultraviolet‐visible diffuse reflectance spectroscopy(UV‐Vis DRS),were used to characterize the properties of the prepared samples.The results indicated that C‐TiO2 was successfully coated on the FAS surface.Coupling between C‐TiO2 and FAS resulted in the formation of Si–O–C and Al–O–Ti bonds at their interface.The formation of Si–O–C and Al–O–Ti bonds gave rise to a positive shift of the valence band edge of C‐TiO2 and enhanced its oxidation capability of photogenerated holes as well as photodegradation efficiency of methyl orange.Moreover,the C‐TiO2/FAS photocatalyst exhibited favorable reusability and separability.This work may provide a new route for tuning the electronic band structure of TiO2.
基金financially supported by the National Natural Science Foundation of China(No.51472177)the China-EU Science and Technology Cooperation Project(No.SQ2013ZOA100006)
文摘Carbon and few-layer MoS2 nanosheets co- modified TiO2 nanocomposites (defined as MoS2-C@TiO2) were prepared through a facile one-step pyrolysis reaction technique. In this unique nanostructure, the TiO2 nanosh- eets with stable structure serve as the backbones, and carbon coating and few-layer MoS2 tightly adhere onto the surface of the TiO2. It needs to be pointed out that the carbon coating improves the overall electronic conductivity and the few-layer MoS2 facilitates the diffusion of lithium ions and offers more active sites for lithium-ion storage. As a result, when evaluated as lithium-ion battery anodes, the MoS2-C@TiO2 nanocomposites exhibit markedly enhanced lithium storage capability compared with pure TiO2. A high specific capacity of 180 mA.h.g-1 has been achieved during the preliminary cycles, and the specific capacity can maintain 160 mA.h.g-1 at a high current density of 1C (1C=167 mA.g-1) even after 300 discharge/ charge cycles, indicating the great potential of the MoS2- C@TiO2 on energy storage.
基金supported by National Natural Science Foundation of China (No. 21808024)Fundamental Research Funds for the Central Universities (DMU 3132018175)
文摘An efficient toluene removal in air using a plasma photocatalytic system(PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma,but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania(B-TiO2)photocatalyst with a dielectric barrier discharge(DBD) can effectively remove toluene with above 70% CO2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l-1,while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD,and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO2 in the plasma region also results in a high discharge efficiency,facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO2. The greatly enhanced performance of the PPS integrated with B-TiO2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
基金supported by the National Natural Science Foundation of China(21878143,21476106,21838004)Joint Re-search Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601)+1 种基金the fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.
基金supported by the National Natural Science Foundation of China(Nos.21677159,21522706,21677167)the National Basic Research Program of China(2011CB936001)the Thousand Young Talents Program of China
文摘Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m^2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti^(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.
基金the financial support provided by internal reseach funding of Khalifa University of Science and Technology,United Arab Emirates(Grant No.CIRA-2018-16)。
文摘Controllable synthesis of insertion-type anode materials with beneficial micro-and nanostructures is a promising approach for the synthesis of sodium-ion storage devices with high-reactivity and excellent electrochemical performance.In this study,we developed a sacrificial-templating route to synthesize TiO_(2)@N-doped carbon nanotubes(TiO_(2)@NC-NTs)with excellent electrochemical performance.The asprepared mesoporous TiO_(2)@NC-NTs with tiny nanocrystals of anatase TiO_(2) wrapped in N-doped carbon layers showed a well-defined tube structure with a large specific surface area of 198 m^(2) g^(-1) and a large pore size of~5 nm.The TiO_(2)@NC-NTs delivered high reversible capacities of 158 m A h g^(-1) at 2 C(1 C=335 m A g^(-1))for 2200 cycles and 146 m A h g^(-1) at 5 C for 4000 cycles,as well as an ultrahigh rate capability of up to 40 C with a capacity of 98 m A h g^(-1).Even at a high current density of 10 C,a capacity of 138 m A h g^(-1) could be delivered over 10,000 cycles.Thus,the synthesis of mesoporous TiO_(2)@NC-NTs was demonstrated to be an efficient approach for developing electrode materials with high sodium storage and long cycle life.
基金Sungsoon Kim and Yoonjun Cho contributed equally to this study.This study was supported by the National Research Foundation of Korea(2015M1A2A2074663,NRF-2019M1A2A2065612,and 2019R1A4A1029237)This study was also supported by the Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade,Industry&Energy of the Republic of Korea(No.20163010012450).
文摘Among the substantial amount of photocatalyst materials,TiO2 has been enthusiastically studied for a few decades due to its outstanding photocatalytic activity and stability.Recently,black TiO2 consisting of approximately 2 nm of thin disorder layer around the surface showed surprisingly high solar hydrogen generation ability.The disorder layer of TiO2 can enhance its light absorption,charge separation,and surface reaction abilities,however exact fundamentals of photocatalytic water-splitting pathways are still ambiguous.Herein,recent progress and investigations on exact functions of disorder layer and its application in photocatalytic CO2 reduction will be discussed.Throughout the comprehensive studies on disorder layer of TiO2,disorder engineering on photocatalyst materials will suggest the further extension of developing solarfuel production technologies.
基金The State Education Ministry "211" Project, the Natural Science Foundation of the Education Commission of Jiangsu Province(2005103TSJB156) and the Funding of the Environment Friendship Laboratory of Nanjing Normal University
文摘TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34×10^3 mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89,88%, The catalyst was reused 6 times and its degradation efficiency hardly changed.
基金financial support from the Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.18SG035)Shanghai Pujiang Program(No.17PJD015)。
文摘It has been demonstrated that the conductivity and electrochemical properties of TiO2 nanomate rials can be significantly improved by an incorporation of carbon additives.In the study,we develop a novel Ndoped TiO2 mesoporous nanostructure via the addition of carbon quantum dots(CQDs)solution following a scalable hydrothermal process.The as-made TiO2 product shows well-defined morphology,high conductivity,large surface area,and abundant mesopores.When evaluated as anodes for sodiumion batteries,the CQDs@TiO2 product annealed at 500℃exhibits a superior sodium storage capability.It delivers a high reversible capacity of 168.8 mAh/g at 100 mA/g over 500 cycles and long cycling stability.The remarkable performance of CQDs@TiO2 mainly arises from the large surface area and mesoporous architecture constructed by ultrathin TiO2 nanosheets,as well as the full coope ration between CQDs and TiO2.
基金This study was supported by the CNPC Research Institute of Safety and Environmental Protection Technology(No.PPCIP2017005).
文摘The hierarchical nanostructured N-doped TiO2 immobilized activated carbon fiber(N-TiO2/ACF)porous composites are fabricated to removal dynamic toluene gas.The results show that nitrogen ions doping and ACF modification can decrease the band gap of TiO2,leading to red shift toward visible light region.Interestingly,N-TiO2/ACF exhibits strongly synergistic effect owing to high surface area,good crystallinity,enhanced bandgap structure and light harvesting.The toluene removal rate of N-TiO2/ACF composites is 2.29 times higher than that of TiO2.The N-TiO2/ACF for toluene degradation followed the Langmuir-Hinshelwood kinetic model,and the rate constant is enhanced 8 times compared with TiO2.The possible photodegradation pathway and mechanisms are proposed.
基金the support provided by the National High Technology Research and Development Program 863 (No.2006AA05Z417)Science and Technology Platform Construction Project of Dalian (2010-354)+4 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No.2013-70)‘‘Shu Guang’’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No.13SG55)National Natural Science Foundation of China (NSFC) (No.61376009)Science and Technology Commission of Shanghai Municipality (No.14YF1410500)Shanghai Young Teacher Supporting Foundation (No.ZZEGD14011)
文摘A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.
基金the National Natural Science Foundation of China(No.20635020,90606016)
文摘TiO2 nanoparticles were homogeneously coated on multi-walled carbon nanotubes by hydrothermal deposition, this nanocomposite may be a promising material for myoglobin immobilization in view of its high biocompatibility and large surface. The glassy carbon electrode modified with Mb-TiO2/MWCNTs films exhibited a pair of weU defined, stable and nearly reversible cycle voltammetric peaks. The electron transfer between Mb and electrode surface, Ks of 3.08 s^-1, was greatly facilitated in the TiO2/ MWCNTs film. The electrocatalytic reductions of hydrogen peroxide were studied, the apparent Michaelis-Menten constant is calculated to be 83.10 μmol/L, which shows a large catalytic activity of Mb in the TiO2/MWCNTs film to H2O2.