In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to ...In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.展开更多
The influence of solid solution treatments on the dissolution of carbides precipitates,the grain size,and the hardness of high strength low expansion alloy were investigated through XRD analysis,microstructure observa...The influence of solid solution treatments on the dissolution of carbides precipitates,the grain size,and the hardness of high strength low expansion alloy were investigated through XRD analysis,microstructure observations,and theoretical computation.It was seen that most primary Mo2C type carbide band dissolved in a temperature range of 1 100-1 150 ℃.When the temperature was over 1 200 ℃,the grain size increased remarkably,which led to the reduction of hardness.展开更多
The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLT...The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.展开更多
基金Funded by the National High-tech Research and Development Program of China(863 Program)
文摘In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.
文摘The influence of solid solution treatments on the dissolution of carbides precipitates,the grain size,and the hardness of high strength low expansion alloy were investigated through XRD analysis,microstructure observations,and theoretical computation.It was seen that most primary Mo2C type carbide band dissolved in a temperature range of 1 100-1 150 ℃.When the temperature was over 1 200 ℃,the grain size increased remarkably,which led to the reduction of hardness.
基金This work was financially supported by the S&T Research Development Project of the Ministry of Science and Technology, China (No.05021050).
文摘The influence of solid-solution temperature on the dissolution of carbide precipitates, the average grain size and the microhardness of the austenite matrix in an Fe-Ni based high strength low thermal expansion (HSLTE) alloy was investigated to obtain the proper temperature range of the solid-solution process. The XRD analysis, microstructure observations, and the theoretical calculations showed that the Mo-rich M2C-type precipitates in the Fe-Ni based HSLTE alloy dissolve completely at about 1100℃. The average grain size of the studied alloys increases from 14 to 46 μm in the temperature range of 1050 to 1200℃. The microhardness of the matrix decreases gust for the sake of solid-solution treatment, but then increases later with increasing solution temperature because of the solution strengthening effect.