In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,ex...In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.展开更多
The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secur...The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secure communications.So,this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets.The Caputo fractional Rössler attractor model is simulated into two categories,(i)Asymmetric and(ii)Symmetric.The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of the Caputo fractional Rössler attractor model,depicting each computation in graphs and tables to analyze how fractional order affects the model’s dynamics.Approximate solutions obtained through the proposed scheme for integer order are well comparable with the fourth-order Runge-Kutta method.Also,the stability analyses of the considered model are discussed for different equilibrium points.Various fractional orders are considered while performing numerical simulations for the Caputo fractional Rössler attractor model by using Mathematica.The suggested approach can solve another non-linear fractional model due to its straightforward implementation.展开更多
本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题...本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题;根据离散系数的性质,利用数学归纳法证明了差分格式的稳定性和收敛性;最后,对具体模型进行数值求解。算例验证了上述理论分析的有效性。展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C1011817)the BK21 Program(Next Generation Education Program for Mathematical Sciences,4299990414089)funded by the Ministry of Education(MOE,Republic of Korea).
文摘In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.
基金"La derivada fraccional generalizada,nuevos resultados y aplicaciones a desigualdades integrales"Cod UIO-077-2024supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secure communications.So,this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets.The Caputo fractional Rössler attractor model is simulated into two categories,(i)Asymmetric and(ii)Symmetric.The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of the Caputo fractional Rössler attractor model,depicting each computation in graphs and tables to analyze how fractional order affects the model’s dynamics.Approximate solutions obtained through the proposed scheme for integer order are well comparable with the fourth-order Runge-Kutta method.Also,the stability analyses of the considered model are discussed for different equilibrium points.Various fractional orders are considered while performing numerical simulations for the Caputo fractional Rössler attractor model by using Mathematica.The suggested approach can solve another non-linear fractional model due to its straightforward implementation.
文摘本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题;根据离散系数的性质,利用数学归纳法证明了差分格式的稳定性和收敛性;最后,对具体模型进行数值求解。算例验证了上述理论分析的有效性。