Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, Caps...Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.展开更多
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference...From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.展开更多
Deep neural networks(DNNs)have been extensively studied in medical image segmentation.However,existing DNNs often need to train shape models for each object to be segmented,which may yield results that violate cardiac...Deep neural networks(DNNs)have been extensively studied in medical image segmentation.However,existing DNNs often need to train shape models for each object to be segmented,which may yield results that violate cardiac anatomical structure when segmenting cardiac magnetic resonance imaging(MRI).In this paper,we propose a capsulebased neural network,named Seg-CapNet,to model multiple regions simultaneously within a single training process.The Seg-CapNet model consists of the encoder and the decoder.The encoder transforms the input image into feature vectors that represent objects to be segmented by convolutional layers,capsule layers,and fully-connected layers.And the decoder transforms the feature vectors into segmentation masks by up-sampling.Feature maps of each down-sampling layer in the encoder are connected to the corresponding up-sampling layers,which are conducive to the backpropagation of the model.The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture,as well as semantic features including the position and size of the objects,which is beneficial for improving the segmentation accuracy.The proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017(ACDC 2017)and the Sunnybrook Cardiac Magnetic Resonance Imaging(MRI)segmentation challenge.Experimental results show that the mean Dice coefficient of Seg-CapNet is increased by 4.7%and the average Hausdorff distance is reduced by 22%.The proposed model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of multiple regions.展开更多
This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to...This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.展开更多
基金the following funds:The Key Scientific Research Project of Anhui Provincial Research Preparation Plan in 2023(Nos.2023AH051806,2023AH052097,2023AH052103)Anhui Province Quality Engineering Project(Nos.2022sx099,2022cxtd097)+1 种基金University-Level Teaching and Research Key Projects(Nos.ch21jxyj01,XLZ-202208,XLZ-202106)Special Support Plan for Innovation and Entrepreneurship Leaders in Anhui Province。
文摘Convolutional neural networks struggle to accurately handle changes in angles and twists in the direction of images,which affects their ability to recognize patterns based on internal feature levels. In contrast, CapsNet overcomesthese limitations by vectorizing information through increased directionality and magnitude, ensuring that spatialinformation is not overlooked. Therefore, this study proposes a novel expression recognition technique calledCAPSULE-VGG, which combines the strengths of CapsNet and convolutional neural networks. By refining andintegrating features extracted by a convolutional neural network before introducing theminto CapsNet, ourmodelenhances facial recognition capabilities. Compared to traditional neural network models, our approach offersfaster training pace, improved convergence speed, and higher accuracy rates approaching stability. Experimentalresults demonstrate that our method achieves recognition rates of 74.14% for the FER2013 expression dataset and99.85% for the CK+ expression dataset. By contrasting these findings with those obtained using conventionalexpression recognition techniques and incorporating CapsNet’s advantages, we effectively address issues associatedwith convolutional neural networks while increasing expression identification accuracy.
文摘From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works.
基金This work was supported by the Collaborative Innovation Major Project of Zhengzhou under Grant No.20XTZX06013the National Natural Science Foundation of China under Grant No.61932014.
文摘Deep neural networks(DNNs)have been extensively studied in medical image segmentation.However,existing DNNs often need to train shape models for each object to be segmented,which may yield results that violate cardiac anatomical structure when segmenting cardiac magnetic resonance imaging(MRI).In this paper,we propose a capsulebased neural network,named Seg-CapNet,to model multiple regions simultaneously within a single training process.The Seg-CapNet model consists of the encoder and the decoder.The encoder transforms the input image into feature vectors that represent objects to be segmented by convolutional layers,capsule layers,and fully-connected layers.And the decoder transforms the feature vectors into segmentation masks by up-sampling.Feature maps of each down-sampling layer in the encoder are connected to the corresponding up-sampling layers,which are conducive to the backpropagation of the model.The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture,as well as semantic features including the position and size of the objects,which is beneficial for improving the segmentation accuracy.The proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017(ACDC 2017)and the Sunnybrook Cardiac Magnetic Resonance Imaging(MRI)segmentation challenge.Experimental results show that the mean Dice coefficient of Seg-CapNet is increased by 4.7%and the average Hausdorff distance is reduced by 22%.The proposed model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of multiple regions.
文摘This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.