期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries 被引量:4
1
作者 Delai Ye Chenghua Sun +4 位作者 Yu Chen Kiyoshi Ozawa Denisa Hulicova-JurcakovaI Jin Zou Lianzhou Wang 《Nano Research》 SCIE EI CAS CSCD 2015年第3期808-820,共13页
Li-rich cathode materials have been considered as promising candidates for high-energy lithium ion batteries (LIBs). In this study, we report a new series of Li-rich materials (Li[Li1/B-2x/BMn2/3-x/3Nix]O2 (0.09 ... Li-rich cathode materials have been considered as promising candidates for high-energy lithium ion batteries (LIBs). In this study, we report a new series of Li-rich materials (Li[Li1/B-2x/BMn2/3-x/3Nix]O2 (0.09 ≤x≤ 0.2)) doped with small amounts of Ni as cathode materials in LIBs, which exhibited unusual phenomenon of capacity increase up to tens of cycles due to the continuous activation of the Li2MnO3 phase. Both experimental and computational results indicate that unlike commonly studied Ni-doped Li-rich cathode materials, smaller amounts of Ni doping can promote the stepwise Li2MnO3 activation to obtain increased specific capacity and better cycling capability. In contrast, excessive Ni will over-activate the Li2MnO3 and result in a large capacity loss in the first cycle. The Lil.25Mn0.625Ni0.12sO2 material with an optimized content of Ni delivered a superior high capacity of -280 mAh.g-1 and good cycling stability at room temperature. 展开更多
关键词 Ni-doping capacity-increase Li-rich cathode materials lithium ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部