Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains...Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.展开更多
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate...Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.展开更多
In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with ...In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.展开更多
Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operati...Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.展开更多
The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively ...The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.展开更多
A pseudocapacitance dominated anode material assembled from Li_(3)VO_(4)nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion c...A pseudocapacitance dominated anode material assembled from Li_(3)VO_(4)nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors(LICs).In this contribution,the N-doped graphene synthesized by a faicle solid state reaction using C_(3)N_(4)nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li_(3)VO_(4)at the nanoscale,and simultaneously efficiently anchors each nanobuilding block inside the interlayers,thus realizing the utilizaiton of full potential of active components.The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene,but also realize robust structure integrity.Owing to these unique advantages,the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90%at both low and high current rates.The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g,capacity retention of 92.7%after 1000 cycles at 2 A/g,and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs.展开更多
Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy...Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy and power density,as well as unsatisfactory long-cycle stability,mainly due to the lack of suitable electrode materials.In this context,we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs.The metal salt serves a dual purpose in the synthesis process:It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure.When applied in ZIHCs,the MnSAs/NCNs electrode demonstrates exceptional performance,including a high capacity of 203 m Ah g^(-1),an energy density of 138 Wh kg^(-1)at 68 W kg^(-1),and excellent cycle stability with 91%retention over 10,000 cycles.Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials,thereby improving the electrochemical property.This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors,not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.展开更多
Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Effi...Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Efficient potassium activation is the key to develop high-performance oxygen-rich porous carbon cathodes.Herein,the alkali lignin,extracted from eucalyptus wood by geopolymer-assisted low-alkali pretreatment,is used to prepare oxygen-rich lignin-derived porous carbons(OLPCs)through KOH activation and K_(2)CO_(3)activation at 700-900℃.KOH activation constructs a hierarchical micro-mesoporous structure,while K_(2)CO_(3)activation constructs a microporous structure.Furthermore,K_(2)CO_(3)activation could more efficiently construct active oxygen(C=O)species than KOH activation.The OLPCs prepared by KOH/K_(2)CO_(3)activations at 800℃show the highest microporosity(78.4/87.7%)and C=O content(5.3/8.0 at.%).Due to that C=O and micropore adsorb zinc ions,the OLPCs prepared by K_(2)CO_(3)activation at 800℃with higher C=O content and microporosity deliver superior capacitive performance(256 F g^(-1)at 0.1 A g^(-1))than that by KOH activation at 800℃(224 F g^(-1)at 0.1 A g^(-1)),and excellent cycling stability.This work provides a new insight into the sustainable preparation of oxygenrich porous carbon cathodes through efficient potassium activation for ZIHCs.展开更多
Developing high-performance anode materials is crucial for the advancement of sodium-ion capacitors with high-energy density and large power density.Bimetallic oxides exhibit a high specific capacity due to their syne...Developing high-performance anode materials is crucial for the advancement of sodium-ion capacitors with high-energy density and large power density.Bimetallic oxides exhibit a high specific capacity due to their synergistic effects in electrochemical processes.However,challenges such as poor electrical conductivity,slow ion transport,and volume expansion severely limit their development.In this study,Co_(2)VO_(4)@C-1.5 was synthesized through a straightforward method involving solvent-heating and carbonization via calcination.The synergistic effect of Co and V,mitigation of volume expansion by the carbon-coated layer,enhancement of pseudocapacitive behavior and improved electrical conductivity of Co_(2)VO_(4)@C-1.5 contribute to its superior electrochemical performance.The specific capacity of Co_(2)VO_(4)@C-1.5 remained steady at 288.8 and 171.7 mAh g^(-1)after 100 and 500 cycles at 100 and 1000 mA g^(-1),respectively.Density functional theory(DFT)calculations show a notable reduction in the energy barrier of Co_(2)VO_(4)@C-1.5.Furthermore,the assembled sodium-ion capacitor Co_(2)VO_(4)@C-1.5//AC demonstrates high-energy density(108.5 Wh kg^(-1)at 99.8 W kg^(-1)),remarkable power density(38.2 Wh kg^(-1)at 12,000 W kg^(-1)),and longcycle stability(capacity retention of 80.6%after 6000 cycles).The design and optimization of the carbon-coated structure provide valuable insights for the development of bimetallic oxide materials in sodium-ion capacitors(SICs).展开更多
Low specific capacitances and/or limited working potential(≤4.5 V).of the prevalent carbon-based positive electrodes as the inborn bottleneck seriously hinder practical advancement of lithium-ion capacitors.Thus,brea...Low specific capacitances and/or limited working potential(≤4.5 V).of the prevalent carbon-based positive electrodes as the inborn bottleneck seriously hinder practical advancement of lithium-ion capacitors.Thus,breakthroughs in enhancement of both specific capacitances and upper cutoff potentials are enormously significant for high-energy density lithium-ion capacitors.Herein,we first meticulously design and scalably fabricate a commercializable fluorine-doped porous carbon material with competitive tap density,large active surface,appropriate aperture distribution,and promoted affinity with the electrolyte,rendering its abundant electroactive inter-/surface and rapid PF_(6)^(-)transport.Theoretical calculations authenticate that fluorine-doped porous carbon possesses lower PF_(6)^(-)adsorption energy and stronger interaction with PF_(6)^(-).Thanks to the remarkable structural/compositional superiority,when served as a positive electrode toward lithium-ion capacitors,the commercial-level fluorine-doped porous carbon showcases the record-breaking electrochemical properties within a wider working window of 2.5-5.0 V(vs Li/Li^(+))in terms of high-rate specific capacitances and long-duration stability,much superior to commercial activated carbon.More significantly,the 4.5 V-class graphite//fluorine-doped porous carbon lithium-ion capacitors are first constructed and manifest competitive electrochemical behaviors with long-cycle life,modest polarization,and large energy density.Our work provides a commendable positive paradigm and contributes a major step forward in next-generation lithium-ion capacitors and even other high-energy density metal-ion capacitors.展开更多
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ...The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.展开更多
1T-MoS_(2)nanosheets,with metallic conductivity and high capacity,hold great potential for lithium-ion capacitors(LICs),but suffer from sluggish reaction kinetics due to dense stacking.Herein,1T-MoS_(2)nanosheets with...1T-MoS_(2)nanosheets,with metallic conductivity and high capacity,hold great potential for lithium-ion capacitors(LICs),but suffer from sluggish reaction kinetics due to dense stacking.Herein,1T-MoS_(2)nanosheets with enlarged interlayer spacing,vertically bonded to reduced graphene oxide(rGO)(1T-MoS_(2)/rGO),were designed using a hydrothermal-assisted dispersion and intercalation strategy.The active nitrogen species derived from N,N-dimethylformamide(DMF)not only bridge the rGO and MoS_(2)through strong Mo-N-C bonds to promote the formation of dispersed MoS_(2)nanosheets,but also intercalate into the MoS_(2)structure,further enlarging the interlayer spacing.This unique structure synergistically enhances meso-and microscale mass transfer outside and inside of the few-layered nanosheets,significantly improving electrochemical reaction kinetics and reducing the kinetic mismatch between the anode and cathode.Consequently,the resulting 1T-MoS_(2)/rGO achieves a capacity of 500 mAh g^(-1)after 500 cycles at 5 A g^(-1)and a high rate performance of 587 mAh g^(-1)at a high rate of 10 A g^(-1).Moreover,the assembled 3D vertical 1T-MoS_(2)/rGO//AC LIC delivers a high energy density of 100.3 Wh kg^(-1)at a power density of1.0 kW kg^(-1),and long cycle stability with capacity retention as high as 91.02%after 5000 cycles at 2 A g^(-1).This work provides a generalizable strategy for engineering two-dimensional material-based electrodes,offering new insights into high-performance energy storage systems.展开更多
Along with the surging demand for energy storage devices,the cost and availability of the materials remain dominant factors in slowing down their industrial application.The repurposing of waste asphalt into high-perfo...Along with the surging demand for energy storage devices,the cost and availability of the materials remain dominant factors in slowing down their industrial application.The repurposing of waste asphalt into high-performance electrode materials is of significant interest,as it holds the potential to circumvent energy and environmental issues.Here,we report the controllable synthesis of asphalt-derived mesoporous carbon as an active material for electrocatalytic hydrogen gas capacitor(EHGC).The hierarchically porous carbon(HPC)with a high surface area of 1943.4 m^(2)·g^(-1)can operate in pH universal aqueous electrolytes in EHGC.It displays a specific energy and power density of 57 Wh·kg^(-1)and 554 W·kg^(-1)in neutral electrolyte as well as 52 Wh·kg^(-1)and 657 W·kg^(-1)in acidic electrolyte.Additionally,the charge storage mechanism of HPC-EHGC is studied with the help of Raman spectroscopy and X-ray photoelectron spectroscopy.Furthermore,the assembled HPC-EHGC device displays a discharge capacitance of 170 F·g^(-1)with an excellent capacitance retention rate of 100%up to 20000 cycles at 10 A·g^(-1)in acidic electrolyte.This work introduces a novel approach to converting waste asphalt into high-performance carbon for EHGC,achieving superior performance over commercial materials.By simultaneously addressing environmental waste issues and advancing energy storage technology,this study makes a significant contribution to sustainable materials science and next-generation battery development.展开更多
Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostruc...Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostructured conjugated carboxylate organic anode materials in LICs has attracted tremendous attention due to their high capacity,excellent capacitive behavior,design flexibility,and environmental friendliness.Nevertheless,no studies have reported the use of non-conjugated organic compounds in LICs.In this study,we report for the first time that non-conjugated adipamide(ADIPAM) nanocrystals fabricated using a dissolution-recrystallization self-assembly technique serve as an excellent anode material for LICs.The unique ADIPAM nanocrystals-PVDF-Super P conductive integrated network architecture accelerates Li^(+) ion and electron diffusion and enhances lithium storage capability.Consequently,ADIPAM electrodes exhibit a high capacity of 705.8 mAh/g,exceptional cycling stability(308 mAh/g after 2100cycles at 5 A/g),and remarkable rate capability.Furthermore,a LIC full cell comprising the ADIPAM anode with a porous activated carbon cathode demonstrates a wide working window(4.5 V),high energy density(238.3 Wh/kg),and superb power density(22,500 W/kg).We believe this work may introduce a new approach to the design of non-conjugated organic materials for LICs.展开更多
Supercapacitors,comprising electrical double-layer capacitors(EDLCs)and pseudocapa-citors,are widely acknowledged as high-power energy storage devices.However,their local structures and fundamental mechanisms remain p...Supercapacitors,comprising electrical double-layer capacitors(EDLCs)and pseudocapa-citors,are widely acknowledged as high-power energy storage devices.However,their local structures and fundamental mechanisms remain poorly understood,and suitable experimental techniques for investigation are also lacking.Recently,nuclear magnetic resonance(NMR)has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.In this paper,we first review the limi-tations of existing characterization methods and highlight the advantages of NMR in investigating mechanisms of supercapacitors.Subsequently,we introduce the basic prin-ciple of ring current effect,NMR-active nuclei,and various NMR techniques employed in exploring energy storage mechanisms including cross polarization(CP)magic angle spinning(MAS)NMR,multiple-quantum(MQ)MAS,two-dimensional exchange spec-troscopy(2D-EXSY)NMR,magnetic resonance imaging(MRI)and pulsed-field gradient(PFG)NMR.Based on this,recent progress in investigating energy storage mechanisms in EDLCs and pseudocapacitors through various NMR techniques is discussed.Finally,an outlook on future directions for NMR research in supercapacitors is offered.展开更多
The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary mate...The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.展开更多
Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because th...Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.展开更多
Metal–insulator–semiconductor(MOS) capacitor is a key structure for high performance MOS field transistors(MOSFETs), requiring low leakage current, high breakdown voltage, and low interface states. In this paper, β...Metal–insulator–semiconductor(MOS) capacitor is a key structure for high performance MOS field transistors(MOSFETs), requiring low leakage current, high breakdown voltage, and low interface states. In this paper, β-Ga_(2)O_(3) MOS capacitors were fabricated with ALD deposited Al_(2)O_(3) using H_(2)O or ozone(O_(3)) as precursors. Compared with the Al_(2)O_(3) gate dielectric with H_(2)O as ALD precursor, the leakage current for the O_(3) precursor case is decreased by two orders of magnitude, while it keeps the same level at the fixed charges, interface state density, and border traps. The SIMS tests show that Al_(2)O_(3) with O_(3) as precursor contains more carbon impurities. The current transport mechanism analysis suggests that the C–H complex in Al_(2)O_(3) with O_(3) precursor serves as deep energy trap to reduce the leakage current. These results indicate that the Al_(2)O_(3)/β-Ga_(2)O_(3)MOS capacitor using the O_(3) precursor has a low leakage current and holds potential for application in β-Ga_(2)O_(3) MOSFETs.展开更多
Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical b...Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical behaviors,yet has not been unraveled.Here we propose an NH_(4)^(+)-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn^(2+)/NH_(4)^(+)co-storage for boosting Zinc hybrid capacitors.Owing to the hierarchical cationic solvated structure in hybrid Zn(CF_(3)SO_(3))_(2)–NH_4CF_(3)SO_(3)electrolyte,high-reactive Zn^(2+)and small-hydrate-sized NH_4(H_(2)O))(4)^(+)induce cathodic interfacial Helmholtz plane reconfiguration,thus effectively enhancing the spatial charge density to activate 20%capacity enhancement.Furthermore,cathodic interfacial adsorbed hydrated NH_(4)^(+)ions afford high-kinetics and ultrastable C···H(NH_(4)^(+))charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H_(2)O)_6^(2+)(5.81 vs.14.90 eV).Consequently,physical uptake and multielectron redox of Zn^(2+)/NH_(4)^(+)in carbon cathode enable the zinc capacitor to deliver high capacity(240 mAh g^(-1)at 0.5 A g^(-1)),large-current tolerance(130 mAh g^(-1)at 50 A g^(-1))and ultralong lifespan(400,000cycles).This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111,and 22309134)the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,20ZR1460300,and 19DZ2271500)+2 种基金the China Postdoctoral Science Foundation(2022M712402),the Shanghai Rising-Star Program(23YF1449200)the Zhejiang Provincial Science and Technology Project(2022C01182)the Fundamental Research Funds for the Central Universities(2023-3-YB-07)。
文摘Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors,but their tailor-made design to optimize the capacitive activity remains a confusing topic.Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures(SCSs)for Zn-ion storage with double-high capacitive activity and durability.Tetrachlorobenzoquinone(H-bond acceptor)and dimethylbenzidine(H-bond donator)can interact to form organic nanosheet modules,which are sequentially assembled,orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds(N-H···O).Featured with rich surface-active heterodiatomic motifs,more exposed nanoporous channels,and successive charge migration paths,SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers(3.3Ωs-0.5).Consequently,the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics,including high energy density(166 Wh kg-1),high-rate performance(172 m Ah g^(-1)at 20 A g^(-1)),and long-lasting cycling lifespan(95.5%capacity retention after 500,000 cycles).An opposite chargecarrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage,involving high-kinetics physical Zn^(2+)/CF_(3)SO_(3)-adsorption and chemical Zn^(2+)redox with carbonyl/pyridine groups.This work gives insights into H-bond-guided interfacial superassembly design of superstructural carbons toward advanced energy storage.
基金supported by the National Natural Science Foundation of China(52477221,52202296)the Natural Science Foundation of Shaanxi Province(2023KXJ-246,2022JQ-048)。
文摘Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.
文摘In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.
文摘Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.
文摘The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.
基金financially supported by the National Natural Science Foundation of China(Nos.52001059,52072119)Hunan Provincial Natural Science Foundation(No.2023JJ50015)the 111 Project(No.D20015)。
文摘A pseudocapacitance dominated anode material assembled from Li_(3)VO_(4)nanocrystals encapsulated in the interlayers of N-doped graphene has been developed via a facile 2D nanospace confined strategy for lithium ion capacitors(LICs).In this contribution,the N-doped graphene synthesized by a faicle solid state reaction using C_(3)N_(4)nanosheets as template and glucose as carbon source provides sufficient 2D nanospace for the confined and homogeneous growth of Li_(3)VO_(4)at the nanoscale,and simultaneously efficiently anchors each nanobuilding block inside the interlayers,thus realizing the utilizaiton of full potential of active components.The so-formed 3D hybrids not only ensure intimate electronic coupling between active materials and N-doped graphene,but also realize robust structure integrity.Owing to these unique advantages,the resulting hybrids show pseudocapacitance dominated lithium storage behaviors with capacitive contributions of over 90%at both low and high current rates.The LVO@C@NG delivers reversible capacities of 206 mAh/g at 10 A/g,capacity retention of 92.7%after 1000 cycles at 2 A/g,and a high energy density of 113.6 Wh/kg at 231.8 W/kg for LICs.
基金National Natural Science Foundation of China (No. 22179123)Taishan Scholar Program of Shandong Province,China (No. tsqn202211048)Fundamental Research Funds for the Central Universities (No.202262010)。
文摘Zinc-ion hybrid capacitors (ZIHCs) have received increasing attention as energy storage devices owing to their low cost,high safety,and environmental friendliness.However,their progress has been hampered by low energy and power density,as well as unsatisfactory long-cycle stability,mainly due to the lack of suitable electrode materials.In this context,we have developed manganese single atoms implanted in nitrogen-doped porous carbon nanosheets (MnSAs/NCNs) using a metal salt template method as cathodes for ZIHCs.The metal salt serves a dual purpose in the synthesis process:It facilitates the uniform dispersion of Mn atoms within the carbon matrix and acts as an activating agent to create the porous structure.When applied in ZIHCs,the MnSAs/NCNs electrode demonstrates exceptional performance,including a high capacity of 203 m Ah g^(-1),an energy density of 138 Wh kg^(-1)at 68 W kg^(-1),and excellent cycle stability with 91%retention over 10,000 cycles.Theoretical calculations indicate that the introduced Mn atoms modulate the local charge distribution of carbon materials,thereby improving the electrochemical property.This work demonstrates the significant potential of carbon materials with metal atoms in zinc-ion hybrid capacitors,not only in enhancing electrochemical performance but also in providing new insights and methods for developing high-performance energy storage devices.
基金supported by the National Natural Science Foundation of China(22408061 and 22468005)Program for Introducing High-Level Talents from Guangxi University,and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2023Z014).
文摘Oxygen-rich porous carbons are promising candidates for the carbon-based cathodes of zinc ion hybrid capacitors(ZIHCs).Potassium activation is a traditional and effective way to prepare oxygen-rich porous carbons.Efficient potassium activation is the key to develop high-performance oxygen-rich porous carbon cathodes.Herein,the alkali lignin,extracted from eucalyptus wood by geopolymer-assisted low-alkali pretreatment,is used to prepare oxygen-rich lignin-derived porous carbons(OLPCs)through KOH activation and K_(2)CO_(3)activation at 700-900℃.KOH activation constructs a hierarchical micro-mesoporous structure,while K_(2)CO_(3)activation constructs a microporous structure.Furthermore,K_(2)CO_(3)activation could more efficiently construct active oxygen(C=O)species than KOH activation.The OLPCs prepared by KOH/K_(2)CO_(3)activations at 800℃show the highest microporosity(78.4/87.7%)and C=O content(5.3/8.0 at.%).Due to that C=O and micropore adsorb zinc ions,the OLPCs prepared by K_(2)CO_(3)activation at 800℃with higher C=O content and microporosity deliver superior capacitive performance(256 F g^(-1)at 0.1 A g^(-1))than that by KOH activation at 800℃(224 F g^(-1)at 0.1 A g^(-1)),and excellent cycling stability.This work provides a new insight into the sustainable preparation of oxygenrich porous carbon cathodes through efficient potassium activation for ZIHCs.
基金financially supported by the Applied Basic Research Project of Qinghai Province(No.2024-ZJ-766)the Youth Innovation Promotion Association CAS(No.2018466)
文摘Developing high-performance anode materials is crucial for the advancement of sodium-ion capacitors with high-energy density and large power density.Bimetallic oxides exhibit a high specific capacity due to their synergistic effects in electrochemical processes.However,challenges such as poor electrical conductivity,slow ion transport,and volume expansion severely limit their development.In this study,Co_(2)VO_(4)@C-1.5 was synthesized through a straightforward method involving solvent-heating and carbonization via calcination.The synergistic effect of Co and V,mitigation of volume expansion by the carbon-coated layer,enhancement of pseudocapacitive behavior and improved electrical conductivity of Co_(2)VO_(4)@C-1.5 contribute to its superior electrochemical performance.The specific capacity of Co_(2)VO_(4)@C-1.5 remained steady at 288.8 and 171.7 mAh g^(-1)after 100 and 500 cycles at 100 and 1000 mA g^(-1),respectively.Density functional theory(DFT)calculations show a notable reduction in the energy barrier of Co_(2)VO_(4)@C-1.5.Furthermore,the assembled sodium-ion capacitor Co_(2)VO_(4)@C-1.5//AC demonstrates high-energy density(108.5 Wh kg^(-1)at 99.8 W kg^(-1)),remarkable power density(38.2 Wh kg^(-1)at 12,000 W kg^(-1)),and longcycle stability(capacity retention of 80.6%after 6000 cycles).The design and optimization of the carbon-coated structure provide valuable insights for the development of bimetallic oxide materials in sodium-ion capacitors(SICs).
基金support from the National Natural Science Foundation of China(Grant No.U22A20145,51904115,52072151,52171211,52102253,and 52271218)Jinan Independent Innovative Team(2020GXRC015)Major Program of Shandong Province Natural Science Foundation(ZR2023ZD43,ZR2021ZD05).
文摘Low specific capacitances and/or limited working potential(≤4.5 V).of the prevalent carbon-based positive electrodes as the inborn bottleneck seriously hinder practical advancement of lithium-ion capacitors.Thus,breakthroughs in enhancement of both specific capacitances and upper cutoff potentials are enormously significant for high-energy density lithium-ion capacitors.Herein,we first meticulously design and scalably fabricate a commercializable fluorine-doped porous carbon material with competitive tap density,large active surface,appropriate aperture distribution,and promoted affinity with the electrolyte,rendering its abundant electroactive inter-/surface and rapid PF_(6)^(-)transport.Theoretical calculations authenticate that fluorine-doped porous carbon possesses lower PF_(6)^(-)adsorption energy and stronger interaction with PF_(6)^(-).Thanks to the remarkable structural/compositional superiority,when served as a positive electrode toward lithium-ion capacitors,the commercial-level fluorine-doped porous carbon showcases the record-breaking electrochemical properties within a wider working window of 2.5-5.0 V(vs Li/Li^(+))in terms of high-rate specific capacitances and long-duration stability,much superior to commercial activated carbon.More significantly,the 4.5 V-class graphite//fluorine-doped porous carbon lithium-ion capacitors are first constructed and manifest competitive electrochemical behaviors with long-cycle life,modest polarization,and large energy density.Our work provides a commendable positive paradigm and contributes a major step forward in next-generation lithium-ion capacitors and even other high-energy density metal-ion capacitors.
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant/Award Number:2023D01C11National Natural Science Foundation of China,Grant/Award Numbers:22369019,U2003216+2 种基金Special Projects on Regional Collaborative Innovation-SCO Science and Technology Partnership Program,International Science and Technology Cooperation Program,Grant/Award Number:2022E01020Tianshan Talent Training Program,Grant/Award Number:2023TSYCLJ0019National Key Research and Development Program of China,Grant/Award Numbers:2022YFB4101600,2022YFB4101601。
文摘The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.
基金the financial support from the National Natural Science Foundation of China(No.52225208 and 51802131)the Training Program for academic and technical leaders in major disciplines of Jiangxi Province-Young Talents(No.20212BCJ23021)the Natural Science Foundation of Jiangxi Province,China(No.20232BAB204020).
文摘1T-MoS_(2)nanosheets,with metallic conductivity and high capacity,hold great potential for lithium-ion capacitors(LICs),but suffer from sluggish reaction kinetics due to dense stacking.Herein,1T-MoS_(2)nanosheets with enlarged interlayer spacing,vertically bonded to reduced graphene oxide(rGO)(1T-MoS_(2)/rGO),were designed using a hydrothermal-assisted dispersion and intercalation strategy.The active nitrogen species derived from N,N-dimethylformamide(DMF)not only bridge the rGO and MoS_(2)through strong Mo-N-C bonds to promote the formation of dispersed MoS_(2)nanosheets,but also intercalate into the MoS_(2)structure,further enlarging the interlayer spacing.This unique structure synergistically enhances meso-and microscale mass transfer outside and inside of the few-layered nanosheets,significantly improving electrochemical reaction kinetics and reducing the kinetic mismatch between the anode and cathode.Consequently,the resulting 1T-MoS_(2)/rGO achieves a capacity of 500 mAh g^(-1)after 500 cycles at 5 A g^(-1)and a high rate performance of 587 mAh g^(-1)at a high rate of 10 A g^(-1).Moreover,the assembled 3D vertical 1T-MoS_(2)/rGO//AC LIC delivers a high energy density of 100.3 Wh kg^(-1)at a power density of1.0 kW kg^(-1),and long cycle stability with capacity retention as high as 91.02%after 5000 cycles at 2 A g^(-1).This work provides a generalizable strategy for engineering two-dimensional material-based electrodes,offering new insights into high-performance energy storage systems.
基金financially supported by the National Natural Science Foundation of China(Nos.92372122 and 52471242)the Fundamental Research Funds for the Central Universities,China(Nos.GG2060127001,KY2060000150,and WK2060000040)supported by the Joint Laboratory for USTC and Yanchang Petroleum,China(No.2022ZK-03)。
文摘Along with the surging demand for energy storage devices,the cost and availability of the materials remain dominant factors in slowing down their industrial application.The repurposing of waste asphalt into high-performance electrode materials is of significant interest,as it holds the potential to circumvent energy and environmental issues.Here,we report the controllable synthesis of asphalt-derived mesoporous carbon as an active material for electrocatalytic hydrogen gas capacitor(EHGC).The hierarchically porous carbon(HPC)with a high surface area of 1943.4 m^(2)·g^(-1)can operate in pH universal aqueous electrolytes in EHGC.It displays a specific energy and power density of 57 Wh·kg^(-1)and 554 W·kg^(-1)in neutral electrolyte as well as 52 Wh·kg^(-1)and 657 W·kg^(-1)in acidic electrolyte.Additionally,the charge storage mechanism of HPC-EHGC is studied with the help of Raman spectroscopy and X-ray photoelectron spectroscopy.Furthermore,the assembled HPC-EHGC device displays a discharge capacitance of 170 F·g^(-1)with an excellent capacitance retention rate of 100%up to 20000 cycles at 10 A·g^(-1)in acidic electrolyte.This work introduces a novel approach to converting waste asphalt into high-performance carbon for EHGC,achieving superior performance over commercial materials.By simultaneously addressing environmental waste issues and advancing energy storage technology,this study makes a significant contribution to sustainable materials science and next-generation battery development.
基金supported by the National Natural Science Foundation of China(Nos.22309022,92372101)the Project of Natural Science Foundation of Chongqing,China(Nos.CSTB2023NSCQMSX0405,CSTB2023NSCQ-LZX0039)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202201104)the Key Project of Chongqing Technology Innovation and Application Development(No.CSTB2023TIADKPX0091)the China Postdoctoral Science Foundation(No.2023M742888)。
文摘Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostructured conjugated carboxylate organic anode materials in LICs has attracted tremendous attention due to their high capacity,excellent capacitive behavior,design flexibility,and environmental friendliness.Nevertheless,no studies have reported the use of non-conjugated organic compounds in LICs.In this study,we report for the first time that non-conjugated adipamide(ADIPAM) nanocrystals fabricated using a dissolution-recrystallization self-assembly technique serve as an excellent anode material for LICs.The unique ADIPAM nanocrystals-PVDF-Super P conductive integrated network architecture accelerates Li^(+) ion and electron diffusion and enhances lithium storage capability.Consequently,ADIPAM electrodes exhibit a high capacity of 705.8 mAh/g,exceptional cycling stability(308 mAh/g after 2100cycles at 5 A/g),and remarkable rate capability.Furthermore,a LIC full cell comprising the ADIPAM anode with a porous activated carbon cathode demonstrates a wide working window(4.5 V),high energy density(238.3 Wh/kg),and superb power density(22,500 W/kg).We believe this work may introduce a new approach to the design of non-conjugated organic materials for LICs.
基金supported by the National Natural Science Foundation of China(Grant No.22075064)National Key Laboratory Projects(No.SYSKT20230056).
文摘Supercapacitors,comprising electrical double-layer capacitors(EDLCs)and pseudocapa-citors,are widely acknowledged as high-power energy storage devices.However,their local structures and fundamental mechanisms remain poorly understood,and suitable experimental techniques for investigation are also lacking.Recently,nuclear magnetic resonance(NMR)has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.In this paper,we first review the limi-tations of existing characterization methods and highlight the advantages of NMR in investigating mechanisms of supercapacitors.Subsequently,we introduce the basic prin-ciple of ring current effect,NMR-active nuclei,and various NMR techniques employed in exploring energy storage mechanisms including cross polarization(CP)magic angle spinning(MAS)NMR,multiple-quantum(MQ)MAS,two-dimensional exchange spec-troscopy(2D-EXSY)NMR,magnetic resonance imaging(MRI)and pulsed-field gradient(PFG)NMR.Based on this,recent progress in investigating energy storage mechanisms in EDLCs and pseudocapacitors through various NMR techniques is discussed.Finally,an outlook on future directions for NMR research in supercapacitors is offered.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)+8 种基金Shenyang Science and Technology Project(21-108-9-04)Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)the Research Fund for the Doctoral Program of Liaoning Province(2022-BS-114)Chunhui Program of the Ministry of Education of the People’s Republic of China(202201135)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemes,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021).
文摘The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.
文摘Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.
基金Project supported in part by the Science and Technology Development Plan Project of Jilin Province, China (Grant No. YDZJ202303CGZH022)the National Key Research and Development Program of China (Grant No. 2024YFE0205300)+1 种基金the National Natural Science Foundation of China (Grant No. 62471504)the Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University) (Grant No. OEMT-2023KF-05)。
文摘Metal–insulator–semiconductor(MOS) capacitor is a key structure for high performance MOS field transistors(MOSFETs), requiring low leakage current, high breakdown voltage, and low interface states. In this paper, β-Ga_(2)O_(3) MOS capacitors were fabricated with ALD deposited Al_(2)O_(3) using H_(2)O or ozone(O_(3)) as precursors. Compared with the Al_(2)O_(3) gate dielectric with H_(2)O as ALD precursor, the leakage current for the O_(3) precursor case is decreased by two orders of magnitude, while it keeps the same level at the fixed charges, interface state density, and border traps. The SIMS tests show that Al_(2)O_(3) with O_(3) as precursor contains more carbon impurities. The current transport mechanism analysis suggests that the C–H complex in Al_(2)O_(3) with O_(3) precursor serves as deep energy trap to reduce the leakage current. These results indicate that the Al_(2)O_(3)/β-Ga_(2)O_(3)MOS capacitor using the O_(3) precursor has a low leakage current and holds potential for application in β-Ga_(2)O_(3) MOSFETs.
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111 and 22309134)the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,20ZR1460300 and 19DZ2271500)+3 种基金China Postdoctoral Science Foundation(2022M712402)Shanghai Rising-Star Program(23YF1449200)Zhejiang Provincial Science and Technology Project(2022C01182)the Fundamental Research Funds for the Central Universities(22120210529 and 2023-3-YB-07)。
文摘Compared with Zn^(2+),the current mainly reported charge carrier for zinc hybrid capacitors,small-hydrated-sized and light-weight NH_(4)^(+)is expected as a better one to mediate cathodic interfacial electrochemical behaviors,yet has not been unraveled.Here we propose an NH_(4)^(+)-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn^(2+)/NH_(4)^(+)co-storage for boosting Zinc hybrid capacitors.Owing to the hierarchical cationic solvated structure in hybrid Zn(CF_(3)SO_(3))_(2)–NH_4CF_(3)SO_(3)electrolyte,high-reactive Zn^(2+)and small-hydrate-sized NH_4(H_(2)O))(4)^(+)induce cathodic interfacial Helmholtz plane reconfiguration,thus effectively enhancing the spatial charge density to activate 20%capacity enhancement.Furthermore,cathodic interfacial adsorbed hydrated NH_(4)^(+)ions afford high-kinetics and ultrastable C···H(NH_(4)^(+))charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H_(2)O)_6^(2+)(5.81 vs.14.90 eV).Consequently,physical uptake and multielectron redox of Zn^(2+)/NH_(4)^(+)in carbon cathode enable the zinc capacitor to deliver high capacity(240 mAh g^(-1)at 0.5 A g^(-1)),large-current tolerance(130 mAh g^(-1)at 50 A g^(-1))and ultralong lifespan(400,000cycles).This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.