Reliability is a persistent challenge in power electronics, with component failures significantly compromising system performance. Capacitors, widely used in power converters for filtering, contribute to approximately...Reliability is a persistent challenge in power electronics, with component failures significantly compromising system performance. Capacitors, widely used in power converters for filtering, contribute to approximately 30% of failures, predominantly due to electrochemical corrosion leading to capacitance degradation and catastrophic breakdowns. This paper presents a novel capacitor-free solid-state power filter(SSPF) for three-phase inverters, offering a transformative approach to mitigate reliability issues associated with conventional inductor-capacitor(LC) and active output filters(AOFs). Unlike AOFs, which depend on compact LC structures, the SSPF eliminates capacitors entirely, circumventing their inherent failure modes. Leveraging advanced solid-state devices and transformer technology, the SSPF achieves superior filtering performance, enhances system reliability, and significantly reduces component count, utilizing half the metal-oxidesemiconductor field effect transistor(MOSFET) switches required by AOFs. This design not only lowers costs but also improves efficiency. Simulation and experimental results demonstrate the SSPF's capability to deliver a sinusoidal output voltage at the fundamental frequency. These attributes position the SSPF as a robust, cost-effective, and innovative solution for modern power electronics applications.展开更多
基金curruntly supported by the Purdue University Office of Technology Commercialization under Track Code (PRF 71167-01)。
文摘Reliability is a persistent challenge in power electronics, with component failures significantly compromising system performance. Capacitors, widely used in power converters for filtering, contribute to approximately 30% of failures, predominantly due to electrochemical corrosion leading to capacitance degradation and catastrophic breakdowns. This paper presents a novel capacitor-free solid-state power filter(SSPF) for three-phase inverters, offering a transformative approach to mitigate reliability issues associated with conventional inductor-capacitor(LC) and active output filters(AOFs). Unlike AOFs, which depend on compact LC structures, the SSPF eliminates capacitors entirely, circumventing their inherent failure modes. Leveraging advanced solid-state devices and transformer technology, the SSPF achieves superior filtering performance, enhances system reliability, and significantly reduces component count, utilizing half the metal-oxidesemiconductor field effect transistor(MOSFET) switches required by AOFs. This design not only lowers costs but also improves efficiency. Simulation and experimental results demonstrate the SSPF's capability to deliver a sinusoidal output voltage at the fundamental frequency. These attributes position the SSPF as a robust, cost-effective, and innovative solution for modern power electronics applications.