In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ...In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.展开更多
With the rapid advancement of portable energy devices and sensor technologies,enhancing their catalytic performance,sensing capabilities,and application reliability has become a critical challenge in the fields of mat...With the rapid advancement of portable energy devices and sensor technologies,enhancing their catalytic performance,sensing capabilities,and application reliability has become a critical challenge in the fields of materials and energy science.Single-atom catalysts(SACs),owing to their high atomic utilization,outstanding catalytic activity,and precisely engineered structures enabled by density functional theory and enhanced by artificial intelligence,have shown tremendous potential in advancing portable energy and sensing technologies.While existing reviews predominantly focus on the application of SACs in individual portable devices,systematic discussions on their overall development prospects and challenges within portable energy and sensor fields remain scarce.Therefore,this review comprehensively explores the application potential and recent advancements of SACs in portable zinc-air batteries,proton exchange membrane fuel cells,and sensor technologies.The article highlights the influence of key factors such as material design,structural optimization,and packaging integration on device performance,while also addressing the primary bottlenecks and challenges encountered in current practical applications.Furthermore,it suggests possible future development directions,aiming to offer theoretical insights and engineering guidance for the large-scale deployment of SACs in wearable electronic devices,portable energy systems,and smart sensing technologies.展开更多
The development of intelligent electronic power systems necessitates advanced flexible pressure sensors.Despite improved compressibility through surface micro-structures or bulk pores,conventional capacitive pressure ...The development of intelligent electronic power systems necessitates advanced flexible pressure sensors.Despite improved compressibility through surface micro-structures or bulk pores,conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers.Herein,we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression.The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets,which interact with polymer molecular chains.The resulting aerogels,with their excellent temperature resistance,were used to assemble high-performance capacitive pressure sensors.The sensor exhibits a maximum sensitivity of 1.41 kPa^(−1)over a wide working range of 0-200 kPa.Meanwhile,the sensor can operate in environments up to 150℃during 2000 compression/release cycles.Furthermore,the aerogel-based sensor demonstrates proximity sensing capabilities,showing great potential for applications in non-contact sensing and extreme environment detection.展开更多
The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center...The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center and ligand, respectively. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy were employed to characterize the synthesized MOF-76 structural features. According to the results, MOF-76 was successfully obtained with minor synthetic modification and its activated form(named TbTMA) was tested as a sensor for methanol. Tb^(3+) luminescence intensity increases as the methanol concentration in ethanol fuel also increases and the water content does not affect this response. Our findings indicate TbTMA as an appropriate sensor for evaluating ethanol fuel adulteration by methanol addition above the allowed limit.展开更多
Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/na...Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.展开更多
This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity...This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
The relatively low sensitivity is an important reason for restricting the microbial fuel cell(MFC)sensors'application in low concentration biodegradable organic matter(BOM)detection.The startup parameters,includin...The relatively low sensitivity is an important reason for restricting the microbial fuel cell(MFC)sensors'application in low concentration biodegradable organic matter(BOM)detection.The startup parameters,including substrate concentration,anode area and external resistance,were regulated to enhance the sensitivity of MFC sensors.The results demonstrated that both the substrate concentration and anode area were positively correlated with the sensitivity of MFC sensors,and an external resistance of 210Ωwas found to be optimal in terms of sensitivity of MFC sensors.Optimized MFC sensors had lower detection limit(1 mg/L)and higher sensitivity(Slope value of the linear regression curve was 1.02),which effectively overcome the limitation of low concentration BOM detection.The essential reason is that optimized MFC sensors had higher coulombic efficiency,which was beneficial to improve the sensitivity of MFC sensors.The main impact of the substrate concentration and anode area was to regulate the proportion between electrogens and nonelectrogens,biomass and living cells of the anode biofilm.The external resistance mainly affected the morphology structure and the proportion of living cells of the anode.This study demonstrated an effective way to improve the sensitivity of MFC sensors for low concentration BOM detection.展开更多
A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic mate...A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment.A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor.2 marble slabs,one was healthy and the other was notched,were experimentally detected.Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material.The reflector can enlarge the sensitive depth.The weathering assessment of nonmetallic materials can be done by processing the measured capacitances.The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation.展开更多
In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type in...In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc–CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity(Sz)are equal to(-1.83) MΩ·cm^2/mW and(-5.365) MΩ·cm^2/mW for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity(Sc) are equal to 0.083 pF·cm^2/mW and 0.185 pF·cm~2/mW for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes(i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed.展开更多
Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrode...Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow. The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.展开更多
To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of exi...To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of existing methods,this paper describes a novel capacitance sensor for measuring the soil retreat.A capacitance sensor based probe is proposed,which can measure the depth of the soil around it automatically and the data can be recorded by a data logger.Experimental results in the lab verify its usefulness.展开更多
The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can...The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can not be implemented and the data from this sensor may be unreliable due to the sensor pipe interior wall abrasion during pneumatic transport,so the solids concentration calculated from the reconstructed image based on these data will be highly inaccurate.The simulations show that, the inter-electrode relative capacitance variation of electrode pair spacing 1 is the most sensitive to the abrasion of sensor pipe interior wall, so this relative capacitance variation when the sensor is filled with air can be used as an indicator demanding offline system recalibration when the wall abrasion goes significant.Furthermore, while the pipe interior wall abrasion is not very serious, online correcting measured inter-electrode capacitance with wall capacitance variation can improve the accuracy of concentration calculation.展开更多
Electronic skin(e-skin) and flexible wearable devices are currently being developed with broad application prospects. Transforming electronic skin(e-skin) into true ¨skin¨is the ultimate goal. Tactile sensin...Electronic skin(e-skin) and flexible wearable devices are currently being developed with broad application prospects. Transforming electronic skin(e-skin) into true ¨skin¨is the ultimate goal. Tactile sensing is a fundamental function of skin and the development of high-performance flexible pressure sensors is necessary to realize thus. Many reports on flexible pressure sensors have been published in recent years,including numerous studies on improving sensor performance, and in particular, sensitivity. In addition,a number of studies have investigated self-healing materials, multifunctional sensing, and so on. Here,we review recent developments in flexible pressure sensors. First, working principles of flexible pressure sensors, including piezoresistivity, capacitance, and piezoelectricity, are introduced, as well as working mechanisms such as triboelectricity. Then studies on improving the performance of piezoresistive and capacitive flexible pressure sensors are discussed, in addition to other important aspects of this intriguing research field. Finally, we summarize future challenges in developing novel flexible pressure sensors.展开更多
In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the gove...In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.展开更多
Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content mea...Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.展开更多
Calcium copper titanate(CCTO)/polystyrenepolyethylene-polybutylene-poly styrene(SEBS)dielectric elastomers were prepared via blending method.A capacitive strain sensor using CCTO/SEBS as dielectric layer and polyanili...Calcium copper titanate(CCTO)/polystyrenepolyethylene-polybutylene-poly styrene(SEBS)dielectric elastomers were prepared via blending method.A capacitive strain sensor using CCTO/SEBS as dielectric layer and polyaniline-dodecylbenzensulfonic acid(PANI-DB S A)/SEBS as electrodes was designed and manufactured by thermoforming process.X-ray diffractometer(XRD),scanning electron microscopy(SEM)and Raman spectra analyses were carried out;no impurities were found in the composite and CCTO particles were well dispersed.The dielectric tests showed that the samples filled with 20 wt%CCTO have their permittivity improved by 70%.The capacitive strain sensors have a stabilized capacitance variety range at different strain ranges or stretch speeds,and could remain synchronized after 500-time-stretching,showing high reproducibility.展开更多
We report newly designed pressure and displacement capacitive sensors based on a flexible paper–CNT structure.The carbon nanotube(CNT) powder was deposited on a thin paper substrate and was pressed at an elevated t...We report newly designed pressure and displacement capacitive sensors based on a flexible paper–CNT structure.The carbon nanotube(CNT) powder was deposited on a thin paper substrate and was pressed at an elevated temperature.The sheet resistance of the paper–CNT films was in the range of 2–4 kΩ/cm^2. The paper–CNT films were used to fabricate pressure and displacement sensors. The sensitivities of the pressure and the displacement sensors were found to be17.3 p F·m^2/k N and 0.93 10-3p F/μm, respectively. The experimental results were compared with the simulated data and they found good agreement with each other.展开更多
The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearabl...The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.展开更多
By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE envir...By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272369)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620101).
文摘In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.
文摘With the rapid advancement of portable energy devices and sensor technologies,enhancing their catalytic performance,sensing capabilities,and application reliability has become a critical challenge in the fields of materials and energy science.Single-atom catalysts(SACs),owing to their high atomic utilization,outstanding catalytic activity,and precisely engineered structures enabled by density functional theory and enhanced by artificial intelligence,have shown tremendous potential in advancing portable energy and sensing technologies.While existing reviews predominantly focus on the application of SACs in individual portable devices,systematic discussions on their overall development prospects and challenges within portable energy and sensor fields remain scarce.Therefore,this review comprehensively explores the application potential and recent advancements of SACs in portable zinc-air batteries,proton exchange membrane fuel cells,and sensor technologies.The article highlights the influence of key factors such as material design,structural optimization,and packaging integration on device performance,while also addressing the primary bottlenecks and challenges encountered in current practical applications.Furthermore,it suggests possible future development directions,aiming to offer theoretical insights and engineering guidance for the large-scale deployment of SACs in wearable electronic devices,portable energy systems,and smart sensing technologies.
基金financially supported by the National Key Research&Development Program of China(No.2022YFA1205200).
文摘The development of intelligent electronic power systems necessitates advanced flexible pressure sensors.Despite improved compressibility through surface micro-structures or bulk pores,conventional capacitive pressure sensors face limitations due to their low dielectric constant and poor temperature tolerance of most elastomers.Herein,we constructed oriented polyimide-based aerogels with mechanical robustness and notable changes in dielectric constant under compression.The enhancement is attributed to the doping of surface-modified dielectric nanoparticles and graphene oxide sheets,which interact with polymer molecular chains.The resulting aerogels,with their excellent temperature resistance,were used to assemble high-performance capacitive pressure sensors.The sensor exhibits a maximum sensitivity of 1.41 kPa^(−1)over a wide working range of 0-200 kPa.Meanwhile,the sensor can operate in environments up to 150℃during 2000 compression/release cycles.Furthermore,the aerogel-based sensor demonstrates proximity sensing capabilities,showing great potential for applications in non-contact sensing and extreme environment detection.
基金the Brazilian agencies FAPES (Fundacao de Amparo a Pesquisa do Estado do Espirito Santo)FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) for financial scholarship
文摘The sensing capability of a Tb^(3+)-metal-organic framework, based on its photoluminescence, was used for detection of methanol in ethanol fuel. It was synthesized using terbium and trimesic acid as a metal ion center and ligand, respectively. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy were employed to characterize the synthesized MOF-76 structural features. According to the results, MOF-76 was successfully obtained with minor synthetic modification and its activated form(named TbTMA) was tested as a sensor for methanol. Tb^(3+) luminescence intensity increases as the methanol concentration in ethanol fuel also increases and the water content does not affect this response. Our findings indicate TbTMA as an appropriate sensor for evaluating ethanol fuel adulteration by methanol addition above the allowed limit.
基金the National Natural Science Foundation of China(NSFC Nos.61674114,91743110,21861132001)National Key Research and Development Program of China(No.2017YFF0204604)+2 种基金Tianjin Applied Basic Research and Advanced Technology(No.17JCJQJC43600)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin Universitythe 111 Project(No.B07014).
文摘Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors.
基金Supported by the National Natural Science Foundation of China(50974095,41174109,61104148)the National Science and Technology Major Projects(2011ZX05020-006)
文摘This paper presents the characteristics of a double helix capacitance sensor for measurement of the liquid holdup in horizontal oil–water two-phase flow. The finite element method is used to calculate the sensitivity field of the sensor in a pipe with 20 mm inner diameter and the effect of sensor geometry on the distribution of sensitivity field is presented. Then, a horizontal oil–water two-phase flow experiment is carried out to measure the response of the double helix capacitance sensor, in which a novel method is proposed to calibrate the liquid holdup based on three pairs of parallel-wire capacitance probes. The performance of the sensor is analyzed in terms of the flow structures detected by mini-conductance array probes.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
基金supported by the National Natural Science Foundation of China(Nos.51525805,51727812 and 51808527)the Soft Science Research Project of Sichuan(No.2019JDR0286)the Special Research Assistant Program of Chinese Academy of Science。
文摘The relatively low sensitivity is an important reason for restricting the microbial fuel cell(MFC)sensors'application in low concentration biodegradable organic matter(BOM)detection.The startup parameters,including substrate concentration,anode area and external resistance,were regulated to enhance the sensitivity of MFC sensors.The results demonstrated that both the substrate concentration and anode area were positively correlated with the sensitivity of MFC sensors,and an external resistance of 210Ωwas found to be optimal in terms of sensitivity of MFC sensors.Optimized MFC sensors had lower detection limit(1 mg/L)and higher sensitivity(Slope value of the linear regression curve was 1.02),which effectively overcome the limitation of low concentration BOM detection.The essential reason is that optimized MFC sensors had higher coulombic efficiency,which was beneficial to improve the sensitivity of MFC sensors.The main impact of the substrate concentration and anode area was to regulate the proportion between electrogens and nonelectrogens,biomass and living cells of the anode biofilm.The external resistance mainly affected the morphology structure and the proportion of living cells of the anode.This study demonstrated an effective way to improve the sensitivity of MFC sensors for low concentration BOM detection.
基金supported by the National Natural Science Foundation of China(60575015)
文摘A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment.A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor.2 marble slabs,one was healthy and the other was notched,were experimentally detected.Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material.The reflector can enlarge the sensitive depth.The weathering assessment of nonmetallic materials can be done by processing the measured capacitances.The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation.
基金supported by the Center for Advanced Materials(CAM),Qatar University,Qatar
文摘In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc–CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity(Sz)are equal to(-1.83) MΩ·cm^2/mW and(-5.365) MΩ·cm^2/mW for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity(Sc) are equal to 0.083 pF·cm^2/mW and 0.185 pF·cm~2/mW for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes(i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed.
基金Project (No. 2002AA616050) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology. Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow. The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.
基金the National Natural Science Foundation of China (Grant No.60672076)
文摘To continuously monitor the soil retreat due to erosion in field,provide valuable information about the erosion processes and overcome the disadvantages of inefficiency,high time-consumption and labor-intensity of existing methods,this paper describes a novel capacitance sensor for measuring the soil retreat.A capacitance sensor based probe is proposed,which can measure the depth of the soil around it automatically and the data can be recorded by a data logger.Experimental results in the lab verify its usefulness.
文摘The recalibration of electrical capacitance tomography (ECT) system is one of the key problems in keeping the system running steadily.However, for engineering application in solids/gas transport,online calibration can not be implemented and the data from this sensor may be unreliable due to the sensor pipe interior wall abrasion during pneumatic transport,so the solids concentration calculated from the reconstructed image based on these data will be highly inaccurate.The simulations show that, the inter-electrode relative capacitance variation of electrode pair spacing 1 is the most sensitive to the abrasion of sensor pipe interior wall, so this relative capacitance variation when the sensor is filled with air can be used as an indicator demanding offline system recalibration when the wall abrasion goes significant.Furthermore, while the pipe interior wall abrasion is not very serious, online correcting measured inter-electrode capacitance with wall capacitance variation can improve the accuracy of concentration calculation.
基金supported by the National Natural Science Foundation of China(Nos.61775032,61475134 and 11604042)the Fundamental Research Funds for the Central Universities(N170405007,N180406002,N180408018 and N160404009)the 111 Project(B16009)。
文摘Electronic skin(e-skin) and flexible wearable devices are currently being developed with broad application prospects. Transforming electronic skin(e-skin) into true ¨skin¨is the ultimate goal. Tactile sensing is a fundamental function of skin and the development of high-performance flexible pressure sensors is necessary to realize thus. Many reports on flexible pressure sensors have been published in recent years,including numerous studies on improving sensor performance, and in particular, sensitivity. In addition,a number of studies have investigated self-healing materials, multifunctional sensing, and so on. Here,we review recent developments in flexible pressure sensors. First, working principles of flexible pressure sensors, including piezoresistivity, capacitance, and piezoelectricity, are introduced, as well as working mechanisms such as triboelectricity. Then studies on improving the performance of piezoresistive and capacitive flexible pressure sensors are discussed, in addition to other important aspects of this intriguing research field. Finally, we summarize future challenges in developing novel flexible pressure sensors.
文摘In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.
文摘Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.
基金financially supported by the National Natural Science Foundation of China(No.51403181)。
文摘Calcium copper titanate(CCTO)/polystyrenepolyethylene-polybutylene-poly styrene(SEBS)dielectric elastomers were prepared via blending method.A capacitive strain sensor using CCTO/SEBS as dielectric layer and polyaniline-dodecylbenzensulfonic acid(PANI-DB S A)/SEBS as electrodes was designed and manufactured by thermoforming process.X-ray diffractometer(XRD),scanning electron microscopy(SEM)and Raman spectra analyses were carried out;no impurities were found in the composite and CCTO particles were well dispersed.The dielectric tests showed that the samples filled with 20 wt%CCTO have their permittivity improved by 70%.The capacitive strain sensors have a stabilized capacitance variety range at different strain ranges or stretch speeds,and could remain synchronized after 500-time-stretching,showing high reproducibility.
基金Project supported by University Malaya Research Grant(Grant No.RP007A-13AFR)
文摘We report newly designed pressure and displacement capacitive sensors based on a flexible paper–CNT structure.The carbon nanotube(CNT) powder was deposited on a thin paper substrate and was pressed at an elevated temperature.The sheet resistance of the paper–CNT films was in the range of 2–4 kΩ/cm^2. The paper–CNT films were used to fabricate pressure and displacement sensors. The sensitivities of the pressure and the displacement sensors were found to be17.3 p F·m^2/k N and 0.93 10-3p F/μm, respectively. The experimental results were compared with the simulated data and they found good agreement with each other.
基金The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China(51773139,51922071).
文摘The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61874085)the Postdoctoral Research Funding Project of Shaanxi Province,China (Grant No. 2018BSHEDZZ41)。
文摘By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.