Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primari...Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.展开更多
Network anomaly detection plays a vital role in safeguarding network security.However,the existing network anomaly detection task is typically based on the one-class zero-positive scenario.This approach is susceptible...Network anomaly detection plays a vital role in safeguarding network security.However,the existing network anomaly detection task is typically based on the one-class zero-positive scenario.This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set.This phenomenon is known as prediction drift.Additionally,the rarity of anomaly data,often masked by normal data,further complicates network anomaly detection.To address these challenges,we propose the PUNet network,which ingeniously combines the strengths of traditional machine learning and deep learning techniques for anomaly detection.Specifically,PUNet employs a reconstruction-based autoencoder to pre-train normal data,enabling the network to capture potential features and correlations within the data.Subsequently,PUNet integrates a sampling algorithm to construct a pseudo-label candidate set among the outliers based on the reconstruction loss of the samples.This approach effectively mitigates the prediction drift problem by incorporating abnormal samples.Furthermore,PUNet utilizes the CatBoost classifier for anomaly detection to tackle potential data imbalance issues within the candidate set.Extensive experimental evaluations demonstrate that PUNet effectively resolves the prediction drift and data imbalance problems,significantly outperforming competing methods.展开更多
To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulat...To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.展开更多
The concept of candidate particle set is introduced in the MPS gridless numerical method to generate neighboring particle set ma- trix, which can reduce the CPU time to 1/11 of that before introduction. The Bi-CGSTAB ...The concept of candidate particle set is introduced in the MPS gridless numerical method to generate neighboring particle set ma- trix, which can reduce the CPU time to 1/11 of that before introduction. The Bi-CGSTAB (bi-conjugate gradient stabilized) algorithm is applied to solving the Poisson pressure equation, by which the solving speed is significantly accelerated. The process of solitary waves propagating over a numerical flume and interacting with a vertical wall is simulated. The simulated results of water surface elevation are in good agreement with the analytical solution as well as the measured data. The predicted maximum values of the run-up of solitary waves with various relative incident wave heights agree well with the measured results.展开更多
A new algorithm for fast discovery of sequential patterns to solve the problems of too many candidate sets made by SPADE is presented, which is referred to as middle matching algorithm. Experiments on a large customer...A new algorithm for fast discovery of sequential patterns to solve the problems of too many candidate sets made by SPADE is presented, which is referred to as middle matching algorithm. Experiments on a large customer transaction database consisting of customer_id, transaction time, and transaction items demonstrate that the proposed algorithm performs better than SPADE attributed to its philosophy to generate a candidate set by matching two sequences in the middle place so as to reduce the number of the candidate sets.展开更多
We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic...We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.展开更多
Location-based services provide service and convenience,while causing the leakage of track privacy.The existing trajectory privacy protection methods lack the consideration of the correlation between the noise sequenc...Location-based services provide service and convenience,while causing the leakage of track privacy.The existing trajectory privacy protection methods lack the consideration of the correlation between the noise sequence,the user’s original trajectory sequence,and the published trajectory sequence.And they are susceptible to noise filtering attacks using filtering methods.In view of this problem,a differential privacy trajectory protection method based on spatiotemporal correlation is proposed in this paper.With this method,the concept of correlation function was introduced to establish the correlation constraint of release track sequence,and the least square method was used to fit the user’s original track and the overall direction of noise sequence to construct noise candidate set.It ensured that the added noise sequence has spatiotemporal correlation with the user’s original track sequence and release track sequence.Also,it effectively resists attackers’denoising attacks,and reduces the risk of trajectory privacy leakage.Finally,comparative experiments were carried out on the real data sets.The experimental results show that this method effectively improves the privacy protection effect and the data availability of the release track,and it also has better practicability.展开更多
基金This work was supported by the Natural Science Foundation of Anhui Province(2022AH050703)the National Natural Science Foundation of China(11671375).
文摘Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.
文摘Network anomaly detection plays a vital role in safeguarding network security.However,the existing network anomaly detection task is typically based on the one-class zero-positive scenario.This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set.This phenomenon is known as prediction drift.Additionally,the rarity of anomaly data,often masked by normal data,further complicates network anomaly detection.To address these challenges,we propose the PUNet network,which ingeniously combines the strengths of traditional machine learning and deep learning techniques for anomaly detection.Specifically,PUNet employs a reconstruction-based autoencoder to pre-train normal data,enabling the network to capture potential features and correlations within the data.Subsequently,PUNet integrates a sampling algorithm to construct a pseudo-label candidate set among the outliers based on the reconstruction loss of the samples.This approach effectively mitigates the prediction drift problem by incorporating abnormal samples.Furthermore,PUNet utilizes the CatBoost classifier for anomaly detection to tackle potential data imbalance issues within the candidate set.Extensive experimental evaluations demonstrate that PUNet effectively resolves the prediction drift and data imbalance problems,significantly outperforming competing methods.
基金Project supported by the National Natural Science Foundation of China (Grant No.50608069)
文摘To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.
基金This work was supported by the Natural Science Foundation of China under No.50479047.
文摘The concept of candidate particle set is introduced in the MPS gridless numerical method to generate neighboring particle set ma- trix, which can reduce the CPU time to 1/11 of that before introduction. The Bi-CGSTAB (bi-conjugate gradient stabilized) algorithm is applied to solving the Poisson pressure equation, by which the solving speed is significantly accelerated. The process of solitary waves propagating over a numerical flume and interacting with a vertical wall is simulated. The simulated results of water surface elevation are in good agreement with the analytical solution as well as the measured data. The predicted maximum values of the run-up of solitary waves with various relative incident wave heights agree well with the measured results.
文摘A new algorithm for fast discovery of sequential patterns to solve the problems of too many candidate sets made by SPADE is presented, which is referred to as middle matching algorithm. Experiments on a large customer transaction database consisting of customer_id, transaction time, and transaction items demonstrate that the proposed algorithm performs better than SPADE attributed to its philosophy to generate a candidate set by matching two sequences in the middle place so as to reduce the number of the candidate sets.
基金Project supported by the National Natural Science Foundation of China(Nos.61473179,61602280,and 61573213)the Natural Science Foundation of Shandong Province,China(Nos.ZR2017MF047,ZR2015CM016,and ZR2014FM007)the Shandong University of Technology&Zibo City Integration Development Project,China(No.2018ZBXC295)。
文摘We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.
文摘Location-based services provide service and convenience,while causing the leakage of track privacy.The existing trajectory privacy protection methods lack the consideration of the correlation between the noise sequence,the user’s original trajectory sequence,and the published trajectory sequence.And they are susceptible to noise filtering attacks using filtering methods.In view of this problem,a differential privacy trajectory protection method based on spatiotemporal correlation is proposed in this paper.With this method,the concept of correlation function was introduced to establish the correlation constraint of release track sequence,and the least square method was used to fit the user’s original track and the overall direction of noise sequence to construct noise candidate set.It ensured that the added noise sequence has spatiotemporal correlation with the user’s original track sequence and release track sequence.Also,it effectively resists attackers’denoising attacks,and reduces the risk of trajectory privacy leakage.Finally,comparative experiments were carried out on the real data sets.The experimental results show that this method effectively improves the privacy protection effect and the data availability of the release track,and it also has better practicability.