为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶...为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶段障碍物点云聚类精度低的问题,设计一种考虑点云距离与外轮廓连续性的两阶段障碍物点云聚类方法并完成三维包围盒的建立;最后将注意力机制引入MobileNet使网络更加聚焦于目标对象特有的视觉特征,并综合利用视觉特征和三维点云信息共同构建关联性度量指标,提高匹配精度。利用KITTI数据集对构建的障碍物目标检测、跟踪与测速算法进行仿真测试,并搭建实车平台进行真实环境试验,验证所提算法的有效性和真实环境可迁移性。展开更多
为减少因船舶偏离航道而造成的搁浅、碰撞航标或桥墩等水上交通事故,提出了一种基于多目相机自动识别航道的桥区航行异常船舶预警方法。基于YOLOv5(You Only Look Once version 5)目标检测算法,联动变、定焦相机识别并定位航标和船舶,...为减少因船舶偏离航道而造成的搁浅、碰撞航标或桥墩等水上交通事故,提出了一种基于多目相机自动识别航道的桥区航行异常船舶预警方法。基于YOLOv5(You Only Look Once version 5)目标检测算法,联动变、定焦相机识别并定位航标和船舶,跟踪并记录船舶航迹点,计算船舶的速度和航向并推算船位。提出了一种基于视频船舶航迹点的密度聚类识别航道两侧航标的方法,实现航道自适应可视化。基于船位推算识别并预警航行状态异常的船舶。实验结果表明:航标、船舶的检测正确率分别达84.8%、90.3%,相较单一相机检测模型,正确率分别提高了32.1%、5.5%;能够自适应可视化航道并识别、预警航行异常船舶。展开更多
文摘为提高无人车障碍物检测跟踪的精度和稳定性,首先针对YOLO v5(You only look once version 5,YOLO v5)网络存在的语义信息和候选框信息丢失的问题,引入深度可分离空洞空间金字塔结构与目标框加权融合算法完成对网络的优化;其次针对单阶段障碍物点云聚类精度低的问题,设计一种考虑点云距离与外轮廓连续性的两阶段障碍物点云聚类方法并完成三维包围盒的建立;最后将注意力机制引入MobileNet使网络更加聚焦于目标对象特有的视觉特征,并综合利用视觉特征和三维点云信息共同构建关联性度量指标,提高匹配精度。利用KITTI数据集对构建的障碍物目标检测、跟踪与测速算法进行仿真测试,并搭建实车平台进行真实环境试验,验证所提算法的有效性和真实环境可迁移性。
文摘为减少因船舶偏离航道而造成的搁浅、碰撞航标或桥墩等水上交通事故,提出了一种基于多目相机自动识别航道的桥区航行异常船舶预警方法。基于YOLOv5(You Only Look Once version 5)目标检测算法,联动变、定焦相机识别并定位航标和船舶,跟踪并记录船舶航迹点,计算船舶的速度和航向并推算船位。提出了一种基于视频船舶航迹点的密度聚类识别航道两侧航标的方法,实现航道自适应可视化。基于船位推算识别并预警航行状态异常的船舶。实验结果表明:航标、船舶的检测正确率分别达84.8%、90.3%,相较单一相机检测模型,正确率分别提高了32.1%、5.5%;能够自适应可视化航道并识别、预警航行异常船舶。