AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera w...AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera with a 30° downward angle, an external magnetically anchored unit, and a vision output device. The camera weighs 12 g, measures Φ10.5 mm × 55 mm and has two magnets, a vision model, a light source, and a metal hexagonal nut. To test the prototype, the camera was inserted through a 12-mm conventional trocar in an ex vivo real liver laparoscopic training system. A trocar-less laparoscopic cholecystectomy was performed 6 times using a 12-mm and a 5-mm conventional trocar. In addition, the same procedure was performed in four canine models.RESULTS Both procedures were successfully performed using only two conventional laparoscopic trocars. The cholecystectomy was completed without any major complication in 42 min(38-45 min) in vitro and in 50 min(45-53 min) using an animal model. This camera was anchored and controlled by an external unit magnetically anchored on the abdominal wall. The camera could generate excellent image. with no instrument collisions.CONCLUSION The camera system we designed provides excellent optics and can be easily maneuvered. The number of conventional trocars is reduced without adding technical difficulties.展开更多
Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensi...Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensional finite element analysis code DFlux is used to compute heat flux along the poloidal divertor target and corresponding quantities. Outside the Origin Strike Zone (OSZ), a Second Peak Heat Flux (SPHF) zone, where the heat flux is even stronger than that at the OSZ, appears on the lower-outer (LO) divertor plates with LHCD and disappears immediately after switching off the LHCD. The main heat-flux shifts from the SPHF zone towards the OSZ when the divertor configuration converts from double null to lower single null, indicating that the growth of the SPHF zone is apparently affected by a plasma magnetic configuration. The heat patterns on the LO divertor plates are observed to be different from that on the lower-inner (LI) targets as the SPHF zone appears only on the LO divertor target. It is also found that the heat flux at the SPHF zone was obviously enhanced after the Supersonic Molecule Beam Injection (SMBI) pulse.展开更多
A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental p...A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.展开更多
Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of s...Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an...This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.展开更多
Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calc...Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fra...It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures.展开更多
This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowin...This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
In this paper, a new CCD camera system used in the OTR beam measurement is presented, the basic principle of OTR beam measurement and the application of CCD chips-ICX208CL and AD9929 in camera system design are introd...In this paper, a new CCD camera system used in the OTR beam measurement is presented, the basic principle of OTR beam measurement and the application of CCD chips-ICX208CL and AD9929 in camera system design are introduced in detail.展开更多
This study introduces the new results of a novel low-cost digital zenith camera system operated in Turkey that uses astronomical and geodetic instrumentation.Currently,it is possible to determine deflections of the ve...This study introduces the new results of a novel low-cost digital zenith camera system operated in Turkey that uses astronomical and geodetic instrumentation.Currently,it is possible to determine deflections of the vertical(DoV)components by using a vast amount of information gathered from geo-referenced star images,tilt measurements,and Global Navigation Satellite System technology.This new design of an astro-geodetic camera system is used for calculating DoV components with 12 independent solutions on a test station in Istanbul,and additional observations were performed to investigate the external accuracy of the system on a test network.A specific leveling method is developed to align system toward the zenithal direction.The final results of the observations on a test station located in Istanbul indicate that the accuracy of the system is about±0.19 arc-seconds in latitude and±0.28 arc-seconds in longitude determination.The system has been further tested on a network with 4 control points that have averagely 20 km baselines.At the test network,the root mean square of the average value of the vertical deflections is calculated as±0.36 arc-seconds.Furthermore,DoV components are compared with the values that are calculated using global geopotential models.展开更多
This paper seeks to determine how the overlap of several infrared beams affects the tracked position of the user, depending on the angle of incidence of light, distance to the target, distance between sensors, and the...This paper seeks to determine how the overlap of several infrared beams affects the tracked position of the user, depending on the angle of incidence of light, distance to the target, distance between sensors, and the number of capture devices used. We also try to show that under ideal conditions using several Kinect sensors increases the precision of the data collected. The results obtained can be used in the design of telerehabilitation environments in which several RGB-D cameras are needed to improve precision or increase the tracking range. A numerical analysis of the results is included and comparisons are made with the results of other studies. Finally, we describe a system that implements intelligent methods for the rehabilitation of patients based on the results of the tests carried out.展开更多
During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFC...During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.展开更多
We develop and build a new type of inspection car.A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used,and a laser-camera measurem...We develop and build a new type of inspection car.A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used,and a laser-camera measurement system based on the machine vision method is adopted.This method projects structural light onto the track and measures gauge and longitudinal irregularity.The measurement principle and model are discussed.Through numerous practical experiments,the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact,thereby increasing measurement stability under high speeds.This new kind of inspection cars have been used in several Chinese administration bureaus.展开更多
Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transform...Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.展开更多
Quality control of Gamma Camera with SPECT System is highly valuable for assurance performance characteristic. We report the performance characteristic of gamma camera by intrinsic calibration and verification measure...Quality control of Gamma Camera with SPECT System is highly valuable for assurance performance characteristic. We report the performance characteristic of gamma camera by intrinsic calibration and verification measurement. The study has been done using the data from Siemens Symbia S Series gamma camera by using a point source 99mTc at the Institute of Nuclear Medicine & Allied Sciences (INMAS), Khulna, Bangladesh. From intrinsic calibration and verification flood series, the integral uniformity for the central field of view (CFOV) has been found in between 4.01% and 2.88% and for the useful field of view (UFOV) has been in between 4.77% and 4.30%. The differential uniformity for the CFOV has been in between 1.53% and 2.04% and for the UFOV has been in between 2.32% and 2.77%. According to Operating Instruction Symbia System S Series manual, uniformity can compensate for values exceeding 10%, however while integral uniformity exceed 7%, have to contract Siemens customer service representative. In conclusion, these results show that the intrinsic uniformity of the gamma camera under this condition is within an acceptable range;thus the gamma camera working in INMAS is performed well.展开更多
基金Supported by National Natural Science Foundation of China(Major Instrumental Program)No.81127005the Science and Technology Innovation Project of Shaanxi Province,China,No.S2016TNGY0119
文摘AIM To design a miniature magnetically anchored and controlled camera system to reduce the number of trocars which are required for laparoscopy.METHODS The system consists of a miniature magnetically anchored camera with a 30° downward angle, an external magnetically anchored unit, and a vision output device. The camera weighs 12 g, measures Φ10.5 mm × 55 mm and has two magnets, a vision model, a light source, and a metal hexagonal nut. To test the prototype, the camera was inserted through a 12-mm conventional trocar in an ex vivo real liver laparoscopic training system. A trocar-less laparoscopic cholecystectomy was performed 6 times using a 12-mm and a 5-mm conventional trocar. In addition, the same procedure was performed in four canine models.RESULTS Both procedures were successfully performed using only two conventional laparoscopic trocars. The cholecystectomy was completed without any major complication in 42 min(38-45 min) in vitro and in 50 min(45-53 min) using an animal model. This camera was anchored and controlled by an external unit magnetically anchored on the abdominal wall. The camera could generate excellent image. with no instrument collisions.CONCLUSION The camera system we designed provides excellent optics and can be easily maneuvered. The number of conventional trocars is reduced without adding technical difficulties.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB101001 and 2014GB101002)
文摘Divertor heat patterns induced by Lower Hybrid Current Drive (LHCD) L-mode plasmas are investigated using an infra-red (IR) camera system on an Experimental Advanced Superconducting Tokamak (EAST). A two-dimensional finite element analysis code DFlux is used to compute heat flux along the poloidal divertor target and corresponding quantities. Outside the Origin Strike Zone (OSZ), a Second Peak Heat Flux (SPHF) zone, where the heat flux is even stronger than that at the OSZ, appears on the lower-outer (LO) divertor plates with LHCD and disappears immediately after switching off the LHCD. The main heat-flux shifts from the SPHF zone towards the OSZ when the divertor configuration converts from double null to lower single null, indicating that the growth of the SPHF zone is apparently affected by a plasma magnetic configuration. The heat patterns on the LO divertor plates are observed to be different from that on the lower-inner (LI) targets as the SPHF zone appears only on the LO divertor target. It is also found that the heat flux at the SPHF zone was obviously enhanced after the Supersonic Molecule Beam Injection (SMBI) pulse.
基金supported by the National Natural Science Foundation of China (Grant Nos.60605028, 50975168)National Hi-tech Research and Development Program of China (Grant Nos.2007AA04Z225, 2009AA04Z211)+1 种基金Program for Excellent Young Teachers of Shanghai (Grant Nos.07Q14024,07QH14006)Shuguang Program of Shanghai (Grant No.07SG47)
文摘A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.
基金the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20172005)。
文摘Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金Supported by the Fundamental Research Funds for the Central Universities(2024300443)the Natural Science Foundation of Jiangsu Province(BK20241224).
文摘This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.
基金supported by Natural Science Foundation of Jilin Province(20210101468JC)Chinese Academy of Sciences and Local Government Cooperation Project(2023SYHZ0027,23SH04)National Natural Science Foundation of China(12273063&12203078)。
文摘Observatories typically deploy all-sky cameras for monitoring cloud cover and weather conditions.However,many of these cameras lack scientific-grade sensors,r.esulting in limited photometric precision,which makes calculating the sky area visibility distribution via extinction measurement challenging.To address this issue,we propose the Photometry-Free Sky Area Visibility Estimation(PFSAVE)method.This method uses the standard magnitude of the faintest star observed within a given sky area to estimate visibility.By employing a pertransformation refitting optimization strategy,we achieve a high-precision coordinate transformation model with an accuracy of 0.42 pixels.Using the results of HEALPix segmentation is also introduced to achieve high spatial resolution.Comprehensive analysis based on real allsky images demonstrates that our method exhibits higher accuracy than the extinction-based method.Our method supports both manual and robotic dynamic scheduling,especially under partially cloudy conditions.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.
基金supported by the National Natural Science Foundation of China(No.52474172).
文摘It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures.
基金funded by the Ministry of Education and Training Project(code number:B2023-TCT-08).
文摘This study presents a drone-based aerial imaging method for automated rice seedling detection and counting in paddy fields.Utilizing a drone equipped with a high-resolution camera,images are captured 14 days postsowing at a consistent altitude of six meters,employing autonomous flight for uniform data acquisition.The approach effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage.The methodology follows a two-step process:first,the GoogleNet deep learning network identifies the location and center points of rice plants.Then,the U-Net deep learning network performs classification and counting of individual plants and clusters.This combination of deep learning models achieved a 90%accuracy rate in classifying and counting both single and clustered seedlings.To validate the method’s effectiveness,results were compared against traditional manual counting conducted by agricultural experts.The comparison revealed minimal discrepancies,with a variance of only 2–4 clumps per square meter,confirming the reliability of the proposed method.This automated approach offers significant benefits by providing an efficient,accurate,and scalable solution for monitoring seedling growth.It enables farmers to optimize fertilizer and pesticide application,improve resource allocation,and enhance overall crop management,ultimately contributing to increased agricultural productivity.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
基金Supported by Major State Basic Besearch Development Program(2002CB713606)
文摘In this paper, a new CCD camera system used in the OTR beam measurement is presented, the basic principle of OTR beam measurement and the application of CCD chips-ICX208CL and AD9929 in camera system design are introduced in detail.
基金This project is supported by The Scientific and Technological Research Council of Turkey(TUBITAK)[grant number 111Y125].
文摘This study introduces the new results of a novel low-cost digital zenith camera system operated in Turkey that uses astronomical and geodetic instrumentation.Currently,it is possible to determine deflections of the vertical(DoV)components by using a vast amount of information gathered from geo-referenced star images,tilt measurements,and Global Navigation Satellite System technology.This new design of an astro-geodetic camera system is used for calculating DoV components with 12 independent solutions on a test station in Istanbul,and additional observations were performed to investigate the external accuracy of the system on a test network.A specific leveling method is developed to align system toward the zenithal direction.The final results of the observations on a test station located in Istanbul indicate that the accuracy of the system is about±0.19 arc-seconds in latitude and±0.28 arc-seconds in longitude determination.The system has been further tested on a network with 4 control points that have averagely 20 km baselines.At the test network,the root mean square of the average value of the vertical deflections is calculated as±0.36 arc-seconds.Furthermore,DoV components are compared with the values that are calculated using global geopotential models.
基金partially supported by Spanish Ministerio de Economía y Competitividad/FEDER(Nos.TIN2012-34003 and TIN2013-47074-C2-1-R)FPU Scholarship(FPU13/03141)from the Spanish Government
文摘This paper seeks to determine how the overlap of several infrared beams affects the tracked position of the user, depending on the angle of incidence of light, distance to the target, distance between sensors, and the number of capture devices used. We also try to show that under ideal conditions using several Kinect sensors increases the precision of the data collected. The results obtained can be used in the design of telerehabilitation environments in which several RGB-D cameras are needed to improve precision or increase the tracking range. A numerical analysis of the results is included and comparisons are made with the results of other studies. Finally, we describe a system that implements intelligent methods for the rehabilitation of patients based on the results of the tests carried out.
基金supported by the National Natural Science Foundation of China(Nos.51505120 and 11105028)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102004)
文摘During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.
基金supported by the National "863" Program of China under Grant No.2009AA11Z102-1
文摘We develop and build a new type of inspection car.A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used,and a laser-camera measurement system based on the machine vision method is adopted.This method projects structural light onto the track and measures gauge and longitudinal irregularity.The measurement principle and model are discussed.Through numerous practical experiments,the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact,thereby increasing measurement stability under high speeds.This new kind of inspection cars have been used in several Chinese administration bureaus.
基金Project 2005A030 supported by the Youth Science and Research Foundation from China University of Mining & Technology
文摘Camera calibration is a critical process in photogrammetry and a necessary step to acquire 3D information from a 2D image. In this paper, a flexible approach for CCD camera calibration using 2D direct linear transformation (DLT) and bundle adjustment is proposed. The proposed approach assumes that the camera interior orientation elements are known, and addresses a new closed form solution in planar object space based on homogenous coordinate representation and matrix factorization. Homogeneous coordinate representation offers a direct matrix correspondence between the parameters of the 2D DLT and the collinearity equation. The matrix factorization starts by recovering the elements of the rotation matrix and then solving for the camera position with the collinearity equation. Camera calibration with high precision is addressed by bundle adjustment using the initial values of the camera orientation elements. The results show that the calibration precision of principal point and focal length is about 0.2 and 0.3 pixels respectivelv, which can meet the requirements of close-range photogrammetry with high accuracy.
文摘Quality control of Gamma Camera with SPECT System is highly valuable for assurance performance characteristic. We report the performance characteristic of gamma camera by intrinsic calibration and verification measurement. The study has been done using the data from Siemens Symbia S Series gamma camera by using a point source 99mTc at the Institute of Nuclear Medicine & Allied Sciences (INMAS), Khulna, Bangladesh. From intrinsic calibration and verification flood series, the integral uniformity for the central field of view (CFOV) has been found in between 4.01% and 2.88% and for the useful field of view (UFOV) has been in between 4.77% and 4.30%. The differential uniformity for the CFOV has been in between 1.53% and 2.04% and for the UFOV has been in between 2.32% and 2.77%. According to Operating Instruction Symbia System S Series manual, uniformity can compensate for values exceeding 10%, however while integral uniformity exceed 7%, have to contract Siemens customer service representative. In conclusion, these results show that the intrinsic uniformity of the gamma camera under this condition is within an acceptable range;thus the gamma camera working in INMAS is performed well.