Estimating depth from images captured by camera sensors is crucial for the advancement of autonomous driving technologies and has gained significant attention in recent years.However,most previous methods rely on stac...Estimating depth from images captured by camera sensors is crucial for the advancement of autonomous driving technologies and has gained significant attention in recent years.However,most previous methods rely on stacked pooling or stride convolution to extract high-level features,which can limit network performance and lead to information redundancy.This paper proposes an improved bidirectional feature pyramid module(BiFPN)and a channel attention module(Seblock:squeeze and excitation)to address these issues in existing methods based on monocular camera sensor.The Seblock redistributes channel feature weights to enhance useful information,while the improved BiFPN facilitates efficient fusion of multi-scale features.The proposed method is in an end-to-end solution without any additional post-processing,resulting in efficient depth estimation.Experiment results show that the proposed method is competitive with state-of-the-art algorithms and preserves fine-grained texture of scene depth.展开更多
Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks a...Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.展开更多
The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments...The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.展开更多
同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地...同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地图构建这四个模块的作用以及所采用的算法;在这之后梳理归纳视觉/激光SLAM发展历程中的经典算法并分析其优缺点以及在此之后优秀的改进方案;此外,列举当前SLAM技术在生活中的典型应用场景,展示在自动驾驶、无人化装备等领域的重要作用;最后讨论SLAM系统当前的发展趋势和研究进展,以及在未来应用中需要考虑的挑战和问题,包括多类型传感器融合、与深度学习技术的融合以及跨学科合作的关键作用。通过对SLAM技术的全面分析和讨论,为进一步推动SLAM技术的发展和应用提供深刻的理论指导和实践参考。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52272421)Shenzhen Fundamental Research Fund(Grant Number:JCYJ20190808142613246 and 20200803015912001).
文摘Estimating depth from images captured by camera sensors is crucial for the advancement of autonomous driving technologies and has gained significant attention in recent years.However,most previous methods rely on stacked pooling or stride convolution to extract high-level features,which can limit network performance and lead to information redundancy.This paper proposes an improved bidirectional feature pyramid module(BiFPN)and a channel attention module(Seblock:squeeze and excitation)to address these issues in existing methods based on monocular camera sensor.The Seblock redistributes channel feature weights to enhance useful information,while the improved BiFPN facilitates efficient fusion of multi-scale features.The proposed method is in an end-to-end solution without any additional post-processing,resulting in efficient depth estimation.Experiment results show that the proposed method is competitive with state-of-the-art algorithms and preserves fine-grained texture of scene depth.
基金supported by the National Natural Science Foundationof China(61100207)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2014BAK14B03)+1 种基金the Fundamental Research Funds for the Central Universities(2013PT132013XZ12)
文摘Most sensors or cameras discussed in the sensor network community are usually 3D homogeneous, even though their2 D coverage areas in the ground plane are heterogeneous. Meanwhile, observed objects of camera networks are usually simplified as 2D points in previous literature. However in actual application scenes, not only cameras are always heterogeneous with different height and action radiuses, but also the observed objects are with 3D features(i.e., height). This paper presents a sensor planning formulation addressing the efficiency enhancement of visual tracking in 3D heterogeneous camera networks that track and detect people traversing a region. The problem of sensor planning consists of three issues:(i) how to model the 3D heterogeneous cameras;(ii) how to rank the visibility, which ensures that the object of interest is visible in a camera's field of view;(iii) how to reconfigure the 3D viewing orientations of the cameras. This paper studies the geometric properties of 3D heterogeneous camera networks and addresses an evaluation formulation to rank the visibility of observed objects. Then a sensor planning method is proposed to improve the efficiency of visual tracking. Finally, the numerical results show that the proposed method can improve the tracking performance of the system compared to the conventional strategies.
文摘The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在无人化装备上有着广泛的应用,可实现室内或室外自主的定位建图任务。该文首先对视觉和激光SLAM基本框架进行介绍,详细阐述前端里程计、后端优化、回环检测以及地图构建这四个模块的作用以及所采用的算法;在这之后梳理归纳视觉/激光SLAM发展历程中的经典算法并分析其优缺点以及在此之后优秀的改进方案;此外,列举当前SLAM技术在生活中的典型应用场景,展示在自动驾驶、无人化装备等领域的重要作用;最后讨论SLAM系统当前的发展趋势和研究进展,以及在未来应用中需要考虑的挑战和问题,包括多类型传感器融合、与深度学习技术的融合以及跨学科合作的关键作用。通过对SLAM技术的全面分析和讨论,为进一步推动SLAM技术的发展和应用提供深刻的理论指导和实践参考。