期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Exploring Kitaev Physics in Honeycomb Magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb):Insights from First-Principles Calculations
1
作者 Shi-Bo Zhao Jia-WanLi Yusheng Hou 《Chinese Physics Letters》 2025年第10期263-289,共27页
Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,... Magnets exhibiting the Kitaev interaction,a bond-dependent magnetic interaction in honeycomb lattices,are generally regarded as promising candidates for hosting novel phenomena like quantum spin liquid states.However,realizing such magnets remains a significant challenge.Recently,some studies have suggested honeycomb magnets A_(3)Ni_(2)XO_(6)(A=Li,Na;X=Bi,Sb)with a high spin S=1 could serve as potential candidates for realizing strong Kitaev interactions.In this work,we systematically investigate their magnetic properties,with a particular emphasis on their Kitaev interactions,using first-principles calculations and Monte Carlo simulations.Our results indicate that all A_(3)Ni_(2)XO_(6)compounds are zigzag antiferromagnets,and their magnetic moments almost tend to be out of plane.We find that their dominant magnetic interactions are the nearest-neighbor ferromagnetic and third-nearest-neighbor antiferromagnetic Heisenberg interactions,while their Kitaev interactions are extremely weak.By analyzing their electronic structures and the mechanism of generating their magnetic interactions,we reveal that either artificially tuning spin-orbit coupling or applying strain cannot produce sufficient spin-orbit entangled states to realize the intriguing Kitaev interactions.Our work advances the understanding of the magnetism in A_(3)Ni_(2)XO_(6)compounds and provides insights for further exploration of Kitaev physics in honeycomb magnets. 展开更多
关键词 honeycomb latticesare kitaev interactiona honeycomb magnets magnetic properties Kitaev physics Ni XO quantum spin liquid stateshoweverrealizing first principles calculations
原文传递
First-principles Investigation of Heavy Metal Adsorption on C-lignin
2
作者 WANG Juan JIA Leiyu +3 位作者 XU Yao ZHANG Zhenzhen DUAN Ziyu ALBINA Jan-Michael 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1790-1794,共5页
We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atom... We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources.Key words:C-lignin;adsorption;We investigated the adsorption mechanisms including physical and chemical adsorption for heavy metals(Cd,Pb,Zn,Co,Cu)on C-lignin using density functional theory(DFT)simulations.Physical adsorption,involving metal atoms near carbon atoms,is found to be endothermic;meanwhile,chemical adsorption,where hydroxyl groups replace metal ions,is exothermic and spontaneous.Pb exhibits the highest physical adsorption potential,while Cu and Co demonstrate the strongest chemical adsorption due to their highly negative adsorption energies.These findings provide valuable insights into the design of eco-friendly nano lignocellulosic composite films for effective heavy metal removal from contaminated water sources. 展开更多
关键词 C-lignin ADSORPTION heavy metal ions first principles calculations metal ions first principles calculations
原文传递
First-principles prediction of shock Hugoniot curves of boron,aluminum,and silicon from stochastic density functional theory
3
作者 Tao Chen Qianrui Liu +1 位作者 Chang Gao Mohan Chen 《Matter and Radiation at Extremes》 2025年第5期73-83,共11页
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr... By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures. 展开更多
关键词 mixed stochastic deterministic density functional theory BORON shock hugoniot curves stochastic density functional theory stochastic density functional theory sdft ALUMINUM SILICON first principles calculations
在线阅读 下载PDF
First principles calculation of intermetallic compounds in FeTiCoNiVCrMnCuAl system high entropy alloy 被引量:10
4
作者 农智升 朱景川 +1 位作者 于海玲 来忠红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1437-1444,共8页
The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form... The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds. 展开更多
关键词 FeTiCoNiVCrMnCuA1 system high entropy alloy first principles calculation phase stability
在线阅读 下载PDF
High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states 被引量:2
5
作者 Feng Lu Jintao Cui +6 位作者 Pan Liu Meichen Lin Yahui Cheng Hui Liu Weichao Wang Kyeongjae Cho Wei-Hua Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期150-156,共7页
Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particu... Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004. 展开更多
关键词 high-throughput calculation one-dimensional atomic wires electronic structure first principles calculation
原文传递
First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity 被引量:1
6
作者 Y Y Wu X L Zhu +3 位作者 H Y Yang Z G Wang Y H Li B T Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期108-114,共7页
Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been ... Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized.Herein,we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory,which provides the basis for its further experimental studies.Our results indicate that the highly twofold degeneracy of the bands appears at theΓpoint in the Brillouin zone,resulting in a high Seebeck coefficient.Besides,Au2S exhibits an ultra-low lattice thermal conductivity(~0.88 W·m^-1·K^-1 at 700 K).At 700 K,the thermoelectric figure of merit of the optimal p-type doping is close to 1.76,which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K.Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications. 展开更多
关键词 first principles calculation thermodynamic transport properties
原文传递
Hydrogen Incorporation in Crystalline Jadeite: Insight from First Principles Calculations
7
作者 ZHANG Xiaoling FAN Xiaoyu +2 位作者 MENG Dawei WU Xiuling LIU Weiping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期939-945,共7页
Hydrogen incorporation is critical for explaining defect energies, structure parameters and other physical characteristics of minerals and understanding mantle dynamics. This work analyzed the hydrogen complex defects... Hydrogen incorporation is critical for explaining defect energies, structure parameters and other physical characteristics of minerals and understanding mantle dynamics. This work analyzed the hydrogen complex defects in jadeite by the plane-wave pseudo-potential method based on density functional theory, and optimized the atomic positions and lattice constants in all configurations (different defective systems). Incorporation mechanisms considered for hydrogen (H) in jadeite include: (1) hydrogen incorporating with the 02 site oxygen and coexisting with M2 vacancy; (2) one H atom combined with an AI atom replacing Si in tetrahedron; (3) 4H atoms directly replacing Si in tetrahedron and (4) 3H atoms replacing Al on the M1 site. The four incorporation mechanisms mentioned above form the corresponding VNa-Hi, Alsi-Hi, Vsi-4Hi and VAr3Hi point defects. The molecular dynamics simulation to the ideal, VNa-Hi, Alsi-Hi, Vsi-4Hi and VAr3Hi point defects under the P-T conditions of 900 K, 2 GPa, the Vsa-Hi and Alsi-Hi point defects under different pressures at T = 900 K, and Alsj-Hj point defects under different temperatures at P = 3 GPa was performed to examine the preferential mode of hydrogen incorporation in jadeite by means of first-principles calculations. The calculations show that the averaged O-H bond-length in the hydrogen point defects system decreased in the order of Alsi-Hi, VNa-HI, Vsl-4Hf and VAI-3Hi. VNa-HI complex defects result in a contraction of the jadeite volume and the presence of Alsi-Hi, Vsi-4H~ and VAI-3Hi defects could increase the superceli volume, which is the most obvious in the VAt-3Hi defects. The energy of formation of Also-HI and VA[-3HI complex defects was much lower than that of other defect systems. The VAI-3Hi defects system has the lowest energy and the shortest O-H bond-length, suggesting that this system is the most favorable. The analytical results of vacancy formation energy, O-H bond- length, and the stability of the hydrogen defects in jadeite have suggested that the preferred hydration incorporation mode in jadeite is VAI-3Hi complex defect. 展开更多
关键词 JADEITE first principles calculations hydrogen point defects hydrogen incorporation
在线阅读 下载PDF
Adsorption of Ag on M-doped graphene:First principle calculations
8
作者 Min Hu Zhou Fan +3 位作者 Jian-yi Liu Kun Zhang Yang Wang Chun-feng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期487-494,共8页
Graphene is an ideal reinforcing phase for a high-performance composite filler,which is of great theoretical and practical significance for improving the wettability and reliability of the filler.However,the poor adso... Graphene is an ideal reinforcing phase for a high-performance composite filler,which is of great theoretical and practical significance for improving the wettability and reliability of the filler.However,the poor adsorption characteristics between graphene and the silver base filler significantly affect the application of graphene filler in the brazing field.It is a great challenge to improve the adsorption characteristics between a graphene and silver base filler.To solve this issue,the adsorption characteristic between graphene and silver was studied with first principle calculation.The effects of Ga,Mo,and W on the adsorption properties of graphene were explored.There are three possible adsorbed sites,the hollow site(H),the bridge site(B),and the top site(T).Based on this research,the top site is the most preferentially adsorbed site for Ag atoms,and there is a strong interaction between graphene and Ag atoms.Metal element doping enhances local hybridization between C or metal atoms and Ag.Furthermore,compared with other doped structures(Ga and Mo),W atom doping is the most stable adsorption structure and can also improve effective adsorption characteristic performance between graphene and Ag. 展开更多
关键词 GRAPHENE FILLER first principle calculations adsorption characteristic
在线阅读 下载PDF
Effects of Doping on Magnetic Properties of YCo_(5-x)Fe_x and YCo_(5-x) Ag_x——First Principles Calculation
9
作者 吴青云 陈志高 +3 位作者 许贵桂 卢宇 钟克华 黄志高 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期293-297,共5页
One way of improving the magnetic properties of RECo5(RE = rare earth) compounds, especially the magnetic anisotropy energy (MAE), is to dope them with some additives such as Fe, Ni, Cu. Those dopants bring changes in... One way of improving the magnetic properties of RECo5(RE = rare earth) compounds, especially the magnetic anisotropy energy (MAE), is to dope them with some additives such as Fe, Ni, Cu. Those dopants bring changes in both lattice geometry and magnetic properties of the compounds. In this paper, the effects of doping on YCo5-x,Fex and YCo5-x Agx were studied in two simple but effective ways: first, the geometric effect induced by doping and then, the pure doping role namely without any geometric changes. The calculated results indicate that the magnetic moments of Co show a transition from a high spin state to a low one with the change of the volume of the cell in all YCo5, YCo3Fe2 and YCo3Ag2 alloys. The change of c/a ratio with constant lattice parameter a also influences drastically the magnetic moments and the MAE. As the geometric structure is not changed, it is found that the doping effects of magnetic element Fe and non-magnetic element Ag are quite different. 展开更多
关键词 permanent magnets magnetic properties first principles calculation rare earths
在线阅读 下载PDF
First principles calculation on electronic structure,chemical bonding,elastic and optical properties of novel tungsten triboride
10
作者 王一夫 夏庆林 余燕 《Journal of Central South University》 SCIE EI CAS 2014年第2期500-505,共6页
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul... The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV. 展开更多
关键词 hP24-WB3 first principles calculation electronic structure chemical bonding elastic properties optical properties
在线阅读 下载PDF
Anisotropic elastic properties and ideal uniaxial compressive strength of TiB_(2) from first principles calculations
11
作者 Min Sun Chong-Yu Wang Ji-Ping Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期443-449,共7页
The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB_(2)) were investigated using first-principles calculations based on density functional theory. T... The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB_(2)) were investigated using first-principles calculations based on density functional theory. The stress-strain relationships of TiB2 under 〈10i0〉, 〈12i0〉, and 〈0001〉 compressive loads were calculated. Our results showed that the ideal uniaxial compressive strengths are |σ〈02i0〉)| = 142.96 GPa, |σ〈0001〉 ] = 188.75 GPa, and |σ〈10i0〉| = 245.33 GPa, at strains -0.16, -0.32, and -0.24, respectively. The variational trend is just the opposite to that of the ideal tensile strength with σ〈10i0〉 = 44.13 GPa, σ〈0001〉 = 47.03 GPa, and σ〈i2i0〉 = 56.09 GPa, at strains 0.14, 0.28, and 0.22, respectively. Furthermore, it was found that TiB2 is much stronger under compression than in tension. The ratios of the ideal compressive to tensile strengths are 5.56, 2.55, and 4.01 for crystallographic directions (10i0), 〈12i0〉, and 〈0001〉, respectively. The present results are in excellent agreement with the most recent experimental data and should be helpful to the understanding of the compressive property of TiB2. 展开更多
关键词 ideal compressive strength electronic structure elastic property first principles calculation
原文传递
MgO-decorated carbon nanotubes for CO_2 adsorption:first principles calculations
12
作者 朱峰 董珊 承刚 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期362-366,共5页
The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles ca... The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles calculations. The results show that the MgO-decorated carbon nanotubes can adsorb CO2 well and are relatively insensitive to O2 and N2 at the same time. The binding energy arrives at 1.18 eV for the single-MgO-decorated carbon nanotube adsorbing one CO2 molecule, while the corresponding values for O2 and N2 are 0.55 eV and 0.06 eV, respectively. In addition, multi-molecule adsorption is also proved to be very satisfactory. These results indicate that MgO-decorated carbon nanotubes have great potential applications in industrial and environmental processes. 展开更多
关键词 carbon nanotube CO2 adsorption first principles calculations
原文传递
First-principles calculations of structural, electronic, and thermodynamic properties of ZnO_(1-x)S_x alloys
13
作者 Muhammad Zafar Shabbir Ahmed +1 位作者 M.Shakil M.A.Choudhary 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期394-400,共7页
In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun... In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations. 展开更多
关键词 first principles calculations density functional theory (DFT) semiconductor materials structural electronic and thermal properties
原文传递
Electronic Structure and Optical Properties in Uranium Dioxide:the First Principle Calculations
14
作者 隋鹏飞 戴振宏 +1 位作者 张晓玲 赵银昌 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期129-133,共5页
We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe ... We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient. 展开更多
关键词 LDA GGA Electronic Structure and Optical Properties in Uranium Dioxide:the First principle calculations
原文传递
Magnetic and Electronic Properties of Double Perovskite Ba2SmNbO6 without Octahedral Tilting by First Principle Calculations
15
作者 Abdelkader Khouidmi Hadj Baltache Ali Zaoui 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第7期168-172,共5页
The structural, magnetic and electronic properties of the double perovskite Ba2SmNbO6 (for the simple cubic structure where no octahedral tilting exists anymore) are studied using the density functional theory withi... The structural, magnetic and electronic properties of the double perovskite Ba2SmNbO6 (for the simple cubic structure where no octahedral tilting exists anymore) are studied using the density functional theory within the generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction. The total energy, the spin magnetic moment, the band structure and the density of states are calculated. The optimization of the lattice constants is 8.5173 A, which is in good agreement with the experimental value 8.5180 A. The calculations reveal that Ba2SmNbO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 5.00μB/f.u. which comes mostly from the Sin3+ ion only. By analysis of the band structure, the compound exhibits the direct band gap material and half-metallic ferromagnetic nature with 100% spin-up polarization, which implies potential applications of this new lanthanide compound in magneto-electronic and spintronic devices. 展开更多
关键词 BA Magnetic and Electronic Properties of Double Perovskite Ba2SmNbO6 without Octahedral Tilting by First principle calculations GGA
原文传递
A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range
16
作者 王庆 王海鹏 +2 位作者 耿德路 李明星 魏炳波 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期37-40,共4页
Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat incre... Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from OK to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range. 展开更多
关键词 Ge Si A Calorimetric Study Assisted with First principle calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range
原文传递
First Principles Calculation of Magnetic Resonance Properties of Cu<sub>2-<i>δ</i></sub>X (X = Se, S, Te)
17
作者 Zhipeng Shao Chenglong Shi 《Journal of Applied Mathematics and Physics》 2021年第6期1245-1256,共12页
In order to have a better understanding of the electronic structures and physical properties of Cu<sub>2-<span style="white-space:nowrap;"><em>δ</em></span></sub>X (X = S... In order to have a better understanding of the electronic structures and physical properties of Cu<sub>2-<span style="white-space:nowrap;"><em>δ</em></span></sub>X (X = Se, S, Te) copper chalcogenides. First principles were performed to calculate the chemical shift, band structure, and electron density of states of Cu<span style="white-space:nowrap;"><sub>2-<em>δ</em></sub></span>X (X = Se, S, Te). By comparing our calculation results with previous experimental works, we found that the predicted electronic structures of Cu<sub>2</sub>Se, Cu<sub>2</sub>Te and Cu<sub>2</sub>S transform from semimetal to semiconductor after adding on-site Coulomb U, which reflects the real properties of the materials. By using (Density Functional Theory) DFT + U method, the calculation result is close to the real electronic structure. The calculation result of chemical shift of adding U does not reach the ideal expectation, and the reason is not clear at present. In this paper, the theoretical electronic structures of Cu<sub>2</sub>Se, Cu<sub>2</sub>Te and Cu<sub>2</sub>S are better calculated by DFT + U method and compared with the actual properties. The effect of Cu-s electron on the chemical shift is understood, and a theoretical result of the chemical shift is calculated, which provides a powerful reference for the subsequent research and understanding of the electronic structure and physical properties of the compounds with S groups of Cu. 展开更多
关键词 Copper Chalcogenides Chemical Shift First principles calculation
在线阅读 下载PDF
Theoretical calculations of structural, electronic, and elastic properties of CdSe_(1-x)Te_x:A first principles study
18
作者 M Shakil Muhammad Zafar +3 位作者 Shabbir Ahmed Muhammad Raza-ur-rehman Hashmi M A Choudhary T Iqbal 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期324-330,共7页
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv... The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature. 展开更多
关键词 first principles calculations density functional theory II–VI semiconductors structural electronic and elastic properties
原文传递
High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing 被引量:2
19
作者 Zhe Li Liang Wang +9 位作者 Yong Yang Chen Liu Baoxian Su Qingda Zhang Zhiwen Li Jiaqi Huang Binbin Wang Liangshun Luo Ruirun Chen Yanqing Su 《Journal of Materials Science & Technology》 2025年第12期131-146,共16页
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo... Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys. 展开更多
关键词 Refractory high entropy alloy OXIDATION Electron beam freeform fabrication Multilayer oxide First principles calculations
原文传递
Single-atom Ti doping on S-vacancy two-dimensional CrS_(2) as a catalyst for ammonia synthesis: A DFT study
20
作者 Yiwen Xu Chaozheng He +1 位作者 Chenxu Zhao Ling Fu 《Chinese Chemical Letters》 2025年第4期522-529,共8页
Electrocatalytic reduction of NO(NORR) is an effective method for NH_(3) synthesis, due to low bonding energy of N–O bond. In this work, we have investigated many CrS_(2)based catalysts, including pristine CrS_(2),Cr... Electrocatalytic reduction of NO(NORR) is an effective method for NH_(3) synthesis, due to low bonding energy of N–O bond. In this work, we have investigated many CrS_(2)based catalysts, including pristine CrS_(2),CrS_(2)with one S vacancy(v-CrS_(2)), and Ti doped CrS_(2)(Ti@CrS_(2)). The results have shown that the pristine CrS_(2)exhibits inert character for NO activation. However, v-CrS_(2)and Ti@CrS_(2)can exhibit enhanced interaction with NO, due to increased charge transfer between NO and substrates(0.52–0.75 e) and enhanced adsorption energies of NO on the catalysts(-0.96~-1.64 e V), compared to the situation of CrS_(2)(0.065 e/-0.30 e V). From the free energy profiles of NO electro-reduction to NH3, we can see that the v-CrS_(2)and Ti@CrS_(2)all exhibit ultralow limiting potentials of-0.03~-0.47 V, following both*NOH and*NHO mechanisms. Therefore, introducing vacancy and doping are all promising modification strategies for NORR catalysts. The results have provided a new idea for the search of catalysts for efficient electrocatalytic reduction of NO. 展开更多
关键词 CrS_(2) NO electrocatalytic reduction First principles calculation Introducing vacancy doping
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部