As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor ...As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2(TRPM2) channel from Nematostella vectensis(nvTRPM2). This identified a calcium-binding site in the S2–S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2(hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvT RPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2–S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues(glutamate and aspartate) substantially decreased the currents of nvT RPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues(glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2–S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2–S3 loop of TRPM2 on the TRPM2 gating process.展开更多
The calcium-binding activity of tilapia scale protein hydrolysates sequentially hydrolyzed by trypsin, flavor enzyme and pepsin were investigated. The hydrolysates were divided into four fractions using G-15 gel chrom...The calcium-binding activity of tilapia scale protein hydrolysates sequentially hydrolyzed by trypsin, flavor enzyme and pepsin were investigated. The hydrolysates were divided into four fractions using G-15 gel chromatography, and the F3 fraction has the higher calcium-binding activity of 196.3 mg/g. The UV-vis and the Fourier transform infrared spectroscopy (FTIR) demonstrate that the amino nitrogen atoms and the oxygen atoms belonging to the carboxylate groups are the primary binding sites for Ca2+. The X-ray diffraction and scanning electron microscopy (SEM) confirmed the reaction between the peptde and calcium. The results obtained indicated that this fish scale protein hydroly-sates have potential as functional foods for calcium-supplementation.展开更多
Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion cha...Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.展开更多
Background: Despite its high prevalence, morbidity, and mortality, sepsis-associated encephalopathy (SAE) is still poorly understood. The aim of this prospective and observational study was to investigate the clini...Background: Despite its high prevalence, morbidity, and mortality, sepsis-associated encephalopathy (SAE) is still poorly understood. The aim of this prospective and observational study was to investigate the clinical significance of calcium-binding protein A8 (S 100AS) in serum and tumor necrosis factor receptor-associated factor 6 (TRAF6) in peripheral blood mononuclear cells (PBMCs) in diagnosing SAE and predicting its prognosis. Methods: Data of septic patients were collected within 24 h after Intensive Care Unit admission fi-om July 2014 to March 2015. Healthy medical personnel served as the control group. SAE was defined as cerebral dysfhnction in the presence of sepsis that fulfilled the exclusion criteria. The biochemical indicators, Glasgow Coma Scale, Acute Physiology and Chronic Health Evaluation score II, TRAF6 in PBMC, serum S 100A8, S 10013, and neuron-specific enolase were evaluated in SAE patients afresh. TRAF6 and S 100A8 were also measured in the control group. Results: Of the 57 enrolled patients, 29 were diagnosed with SAE. The S 100A8 and TRAF6 concentrations in SAE patients were both significantly higher than that in no-encephalopathy (NE) patients, and higher in NE than that in controls (3.74 ± 3.13 vs. 1.08 ± 0.75 vs. 0.37 ± 0.14 ng/ml, P 〈 0.01 ; 3.18 ± 1.55 vs. 1.02 ± 0.63 vs. 0.47 ± 0.10, P 〈 0.01). S 100A8 levels of 1.93 ng/ml were diagnostic of SAE with 92.90% specificity and 69.00% sensitivity in the receiver operating characteristic (ROC) curve, and the area under the curve was 0.86 (95% confidence interval [CI]: 0.76-0.95). TRAF6-relative levels of 1.44 were diagnostic of SAE with 85.70% specificity and 86.20% sensitivity, and the area under the curve was 0.94 (95% CI: 0.88-0.99). In addition, S 100A8 levels of 2.41 ng/ml predicted 28-day mortality of SAE with 90.00% specificity and 73.70% sensitivity in the ROC curve, and the area under the curve was 0.88. TRAF6 relative levels of 2.94 predicted 28-day mortality of SAE with 80.00% specificity and 68.40% sensitivity, and the area under the curve was 0.77. Compared with TRAF6, the specificity of serum S 100A8 in diagnosing SAE and predicting mortality was higher, although the sensitivity was low. In contrast, the TRAF6 had higher sensitivity for diagnosis. Conclusions: Peripheral blood levels of S 100A8 and TRAF6 in SAE patients were elevated and might be related to the severity of SAE and predict the outcome of SAE. The efficacy and specificity of S 100A8 for SAE diagnosis were superior, despite its weak sensitivity. S100A8 might be a better biomarker for diagnosis of SAE and predicting prognosis.展开更多
The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel β-ro...The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel β-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the light of macrophage-pathogen interaction and pathogenesis is presented.展开更多
Background We investigated the co-expression of calb indin-D28k (CB), calretinin (CR) and parvalbumin (PV, a combination of the three is referred to as CaBPs) with γ-aminobutyric acid (GABA) or glycine in neurons of ...Background We investigated the co-expression of calb indin-D28k (CB), calretinin (CR) and parvalbumin (PV, a combination of the three is referred to as CaBPs) with γ-aminobutyric acid (GABA) or glycine in neurons of the rat medullary dorsal horn (MDH).Methods Immunofluorescence histochemical double-staining for CaBPs and GABA or glycine was performed on the sections from rat MDH. Results CB-, CR-, PV-, GABA- and glycine-like immunoreactive (LI) neurons were differentially observed in all layers of the MDH, but particularly in lamina Ⅱ. Neurons that exhibited immunoreactivity for both CaBPs and GABA or glycine were also observed mainly in lamina Ⅱ. A few of them were found in laminae I and III. The percentages of neurons which co-expressed CB/GABA or CB/glycine out of the total numbers of CB- and GABA-LI neurons or CB- and glycine-LI neurons were 5.3% and 12.1% or 4.1% and 10.0%, respectively. The ratios of CR/GABA or CR/glycine co-existing neurons out of the total numbers of CR- and GABA-LI neurons or CR- and glycine-LI neurons were 5.8% and 7.6% or 4.4% and 7.1%, respectively. The rates of PV/GABA or PV/glycine co-localized neurons out of the total numbers of PV- and GABA-LI neurons or PV- and glycine-LI neurons were 11.1% and 5.1% or 9.9% and 5.1%, respectively. Conclusion The results indicate that some neurons in the MDH contain both CaBPs and GABA or glycine.展开更多
Aim:The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1(IBA-1)staine...Aim:The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1(IBA-1)stained brain sections.Methods:The novel method was compared to currently used analysis methods,visual characterization of activation stage and optical density measurement,in brain sections of young and aged rats that had undergone surgery or remained naïve.Results:The cell body to cell size ratio of microglia was strongly correlated to the visual characterization activation stage.In addition,we observed specific surgery and age-related changes in cell body size,size of the dendritic processes and cell body to cell size ratio.Conclusion:The novel analysis method provides a sensitive marker for microglial activation in the rat brain,which is quick and easy to perform and provides additional information about microglial morphology.展开更多
Background:In plastic surgery,tissue expansion is widely used for repairing skin defects.However,low expansion efficiency and skin rupture caused by thin,expanded skin remain significant challenges in promoting skin r...Background:In plastic surgery,tissue expansion is widely used for repairing skin defects.However,low expansion efficiency and skin rupture caused by thin,expanded skin remain significant challenges in promoting skin regeneration during expansion.S100 calcium-binding protein A9(S100A9)is essential in promoting wound healing;however,its effects on skin regeneration during tissue expansion remain unclear.The aim of the present study was to explore the role of S100A9 in skin regeneration,particularly collagen production to investigate its importance in skin regeneration during tissue expansion.Methods:The expression and distribution of S100A9 and its receptors-toll-like receptor 4(TLR-4)and receptor for advanced glycation end products were studied in expanded skin.These character-istics were investigated in skin samples of rats and patients.Moreover,the expression of S100A9 was investigated in stretched keratinocytes in vitro.The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed.TAK-242 was used to inhibit the binding of S100A9 to TLR-4;the levels of collagen I(COL I),transforming growth factor beta(TGF-β),TLR-4 and phospho-extracellular signal-related kinase 1/2(p-ERK1/2)in fibroblasts were determined.Furthermore,fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I,TGF-β,TLR-4 and p-ERK1/2 in fibroblasts were investigated.Additionally,the area of expanded skin,thickness of the dermis,and synthesis of COL I,TGF-β,TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin.Results:Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix(ECM)in the expanded dermis.Furthermore,S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-βin fibroblasts via the TLR-4/ERK1/2 pathway.We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I,TGF-β,TLR-4 and p-ERK1/2 expression in skin fibroblasts.Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion.Conclusions:These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression.Our study laid the foundation for clinically improving tissue expansion using S100A9.展开更多
BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignancies in elderly populations,and chemotherapy resistance remains a critical clinical challenge.Emerging evidence highlights the interplay between ...BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignancies in elderly populations,and chemotherapy resistance remains a critical clinical challenge.Emerging evidence highlights the interplay between chronic inflammation,gut microbiome dysbiosis,and CRC progression.Proinflammatory cytokines[e.g.,interleukin(IL)-6,tumor necrosis factor-alpha(TNF-α)]and mediators like S100 calcium-binding protein A12(S100A12)/soluble receptor for advanced glycation end products(sRAGE)are implicated in tumorigenesis,while gut microbial imbalances may exacerbate inflammatory microenvironments conducive to che-motherapy resistance.However,the triad relationship between S100A12/sRAGE,gut microbiota profiles,and chemotherapy efficacy in elderly patients with CRC remains unexplored,limiting biomarker-driven therapeutic strategies.AIM To analyze the correlation between serum levels of S100A12,sRAGE,gut microbiome dysbiosis,and systemic inflammation in elderly patients with CRC and to assess their predictive value for chemotherapy efficacy.METHODS A retrospective analysis was conducted on the clinical data of 120 elderly patients with advanced-stage CRC who visited our hospital from August 2023 to May 2024.These patients were enrolled in the study group.Additionally,120 healthy individuals undergoing routine health check-ups during the same period were selected as the control group.Serum S100A12,sRAGE,IL-6,and TNF-αlevels were measured by ELISA,and fresh stool samples were collected before chemotherapy to analyze gut microbiome composition in the study group.Follow-up observations were conducted after chemotherapy.Pearson correlation analysis was used to explore the relationship between serum S100A12,sRAGE levels,and gut microbiome dysbiosis in patients with CRC.The predictive diagnostic value of pre-chemotherapy serum S100A12 and sRAGE levels for chemotherapy efficacy was assessed using receiver operating characteristic curves.RESULTS Pre-chemotherapy serum S100A12,sRAGE,IL-6,and TNF-αlevels were significantly elevated in patients with CRC vs controls(all P<0.05).These biomarkers progressively increased with microbiota dysbiosis severity(severe vs mild dysbiosis:S100A12:340.26±52.39μg/L vs 302.53±56.97μg/L;sRAGE:525.64±37.32 ng/L vs 441.38±48.73 ng/L,P<0.05)and correlated strongly with IL-6(r=0.712)and TNF-α(r=0.698).Post-chemotherapy,biomarker levels decreased(P<0.05),coinciding with beneficial microbiota recovery(Bifidobacterium 176%,Lactobacillus 153%)and pathogenic taxa reduction(Escherichia coli 62%).The combined S100A12/sRAGE model predicted chemotherapy resistance with an area under the curve of 0.914(sensitivity=86.07%,specificity=88.89%),outper-forming individual biomarkers.CONCLUSION Elevated serum S100A12 and sRAGE in elderly patients with CRC reflected gut microbiome dysbiosis and systemic inflammation,driven by IL-6/TNF-αsignaling.Their post-chemotherapy decline parallels microbiota restoration,supporting a microbiome-inflammation-biomarker axis.The combined biomarker model offers robust clinical utility for chemotherapy efficacy prediction and personalized therapeutic strategies.展开更多
Background:With the increasing risk of nuclear exposure,more attention has been paid to the prevention and treatment of acute radiation syndrome(ARS).Although amino acids are key nutrients involved in hematopoietic re...Background:With the increasing risk of nuclear exposure,more attention has been paid to the prevention and treatment of acute radiation syndrome(ARS).Although amino acids are key nutrients involved in hematopoietic regulation,the impacts of amino acids on bone marrow hematopoiesis following irradiation and the associated mechanisms have not been fully elucidated.Hence,it is of paramount importance to study the changes in amino acid metabolism after irradiation and their effects on hematopoiesis as well as the related mechanisms.Methods:The content of serum amino acids was analyzed using metabolomic sequencing.The survival rate and body weight of the irradiated mice were detected after altering the methionine content in the diet.Extracellular matrix(ECM)protein analysis was performed via proteomics analysis.Inflammatory factors were examined by enzyme-linked immunosorbent assay(ELISA).Flow cytometry,Western blotting,and immunofluorescence were employed to determine the mechanism by which S100 calcium-binding protein A4(S100A4)regulates macrophage polarization.Results:The survival time of irradiated mice was significantly associated with alterations in multiple amino acids,particularly methionine.A high methionine diet promoted irradiation tolerance,especially in the recovery of bone marrow hematopoiesis,yet with dose limitations.Folate metabolism could partially alleviate the dose bottleneck by reducing the accumulation of homocysteine.Mechanistically,high methionine levels maintained the abundance of ECM components,including collagens and glycoproteins,in the bone marrow post-irradiation,among which the level of S100A4 was significantly changed.S100A4 regulated macrophage polarization via the STAT3 pathway,inhibited bone marrow inflammation and facilitated the proliferation and differentiation of hematopoietic stem/progenitor cells.Conclusions:We have demonstrated that an appropriate elevation in dietary methionine enhances irradiation tolerance in mice and explains the mechanism by which methionine regulates bone marrow hematopoiesis after irradiation.展开更多
The body surface of crustaceans is covered with a sturdy shell.The growth and development of crustaceans are realized through molting.Neocaridina denticulata sinensis is a suitable candidate for crustacean scientific ...The body surface of crustaceans is covered with a sturdy shell.The growth and development of crustaceans are realized through molting.Neocaridina denticulata sinensis is a suitable candidate for crustacean scientific research.Two calcium-associated cuticular protein genes,named NdCAP-1 and NdCAP-2,were obtained from N.denticulata sinensis.Molecular docking simulated the binding effect of both proteins and calcium ions.Semi-quantitative reverse transcription PCR results show that NdCAP-1 is expressed in D_(2-4) stage,NdCAP-2 expressed in D_(2-4) and A-B stages,and both were significantly expressed in the cephalothorax cuticle and pereiopods.Then,it was revealed that NdCAP-1 and NdCAP-2 are regulated by NdEcR-mediated 20 E signaling pathways.Knockdown of NdCAP-1 and NdCAP-2 was observed to cause surface defects.The recombinant proteins(rNdCAP-1 and rNdCAP-2),obtained by prokaryotic expression,had calcium-binding and chitin-binding ability,inhibited formation of calcium carbonate precipitate.These results show that calcium-associated cuticular proteins play important roles in cuticle formation and calcification.展开更多
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain.Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons.Calretinin(CR)is one of the ...Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain.Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons.Calretinin(CR)is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons.The functions of CR and its role in neural excitability are still unknown.Recent data suggest that CR neurons have diverse neurotransmitters,morphologies,distributions,and functions in different brain regions across various species.Notably,CR neurons in the hippocampus,amygdala,neocortex,and thalamus are extremely susceptible to excitotoxicity in the epileptic brain,but the causal relationship is unknown.In this review,we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy.Importantly,we provide perspectives on future investigations of the role of CR neurons in epilepsy.展开更多
BACKGROUND Acute pancreatitis(AP)and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis.The validated caerulein-(CAE)induced mouse model of acute/recu...BACKGROUND Acute pancreatitis(AP)and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis.The validated caerulein-(CAE)induced mouse model of acute/recurring AP produces secondary persistent hypersensitivity and anxiety-like behavioral changes for study.AIM To determine efficacy of acetyl-L-carnitine(ALC)to reduce pain-related behaviors and brain microglial activation along the pain circuitry in CAE-pancreatitis.METHODS Pancreatitis was induced with 6 hly intraperitoneal(i.p.)injections of CAE(50μg/kg),3 d a week for 6 wk in male C57BL/6J mice.Starting in week 4,mice received either vehicle or ALC until experiment’s end.Mechanical hypersensitivity was assessed with von Frey filaments.Heat hypersensitivity was determined with the hotplate test.Anxiety-like behavior was tested in week 6 using elevated plus maze and open field tests.Microglial activation in brain was quantified histologically by immunostaining for ionized calcium-binding adaptor molecule 1(Iba1).RESULTS Mice with CAE-induced pancreatitis had significantly reduced mechanical withdrawal thresholds and heat response latencies,indicating ongoing pain.Treatment with ALC attenuated inflammation-induced hypersensitivity,but hypersensitivity due to abdominal wall injury caused by repeated intraperitoneal injections persisted.Animals with pancreatitis displayed spontaneous anxiety-like behavior in the elevated plus maze compared to controls.Treatment with ALC resulted in increased numbers of rearing activity events,but time spent in“safety”was not changed.After all the abdominal injections,pancreata were translucent if excised at experiment’s end and opaque if excised on the subsequent day,indicative of spontaneous healing.Post mortem histopathological analysis performed on pancreas sections stained with Sirius Red and Fast Green identified wide-spread fibrosis and acinar cell atrophy in sections from mice with CAE-induced pancreatitis that was not rescued by treatment with ALC.Microglial Iba1 immunostaining was significantly increased in hippocampus,thalamus(intralaminar nuclei),hypothalamus,and amygdala of mice with CAE-induced pancreatitis compared to naïve controls but unchanged in the primary somatosensory cortex compared to naïves.CONCLUSION CAE-induced pancreatitis caused increased pain-related behaviors,pancreatic fibrosis,and brain microglial changes.ALC alleviated CAE-induced mechanical and heat hypersensitivity but not abdominal wall injury-induced hypersensitivity caused by the repeated injections.展开更多
Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the de...Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the development and progression of several neurological diseases. Likewise, astrocytic reactivity-a wellknown process that markedly influences the tissue remodeling after a central nervous system injury-is crucial for tissue remodeling after spinal cord injury(SCI). However, the linkage between the above-mentioned mechanisms after SCI remains poorly understood. We sought to investigate the relation between both glial fibrillary acidic protein(GFAP) and S100 calcium-binding protein B(S100B)(astrocytic reactivity classical markers) and global histone H4 acetylation levels. Sixty-one male Wistar rats(aged ~3 months) were divided into the following groups: sham; 6 hours post-SCI; 24 hours post-SCI; 48 hours post-SCI; 72 hours post-SCI; and 7 days post-SCI. The results suggested that GFAP, but not S100B was associated with global histone H4 acetylation levels. Moreover, global histone H4 acetylation levels exhibited a complex pattern after SCI, encompassing at least three clearly defined phases(first phase: no changes in the 6, 24 and 48 hours post-SCI groups; second phase: increased levels in the 72 hours post-SCI group; and a third phase: return to levels similar to control in the 7 days post-SCI group). Overall, these findings suggest global H4 acetylation levels exhibit distinct patterns of expression during the first week post-SCI, which may be associated with GFAP levels in the perilesional tissue. Current data encourage studies using H4 acetylation as a possible biomarker for tissue remodeling after spinal cord injury.展开更多
Experimental studies have shown that exercise and human adipose-derived stem cells(ADSCs)play positive roles in spinal cord injury(SCI).However,whether ADSCs and/or exercise have a positive effect on SCI-induced neuro...Experimental studies have shown that exercise and human adipose-derived stem cells(ADSCs)play positive roles in spinal cord injury(SCI).However,whether ADSCs and/or exercise have a positive effect on SCI-induced neuropathic pain is still unclear.Thus,there is a need to explore the effects of exercise combined with administration of ADSCs on neuropathic pain after SCI.In this study,a thoracic 11(T11)SCI contusion model was established in adult C57BL/6 mice.Exercise was initiated from 7 days post-injury and continued to 28 days post-injury,and approximately 1×105 ADSCs were transplanted into the T11 spinal cord lesion site immediately after SCI.Motor function and neuropathic pain-related behaviors were assessed weekly using the Basso Mouse Scale,von Frey filament test,Hargreaves method,and cold plate test.Histological studies(Eriochrome cyanine staining and immunohistochemistry)were performed at the end of the experiment(28 days post-injury).Exercise combined with administration of ADSCs partially improved early motor function(7,14,and 21 days postinjury),mechanical allodynia,mechanical hypoalgesia,thermal hyperalgesia,and thermal hypoalgesia.Administration of ADSCs reduced white and gray matter loss at the lesion site.In addition,fewer microglia and astrocytes(as identified by expression of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein,respectively)were present in the lumbar dorsal horn in the SCI+ADSCs and SCI+exercise+ADSCs groups compared with the sham group.Our findings suggest that exercise combined with administration of ADSCs is beneficial for the early recovery of motor function and could partially ameliorate SCIinduced neuropathic pain.展开更多
Epinephrine is often used for the treatment of patients with heart failure, low cardiac output and cardiac arrest. It can acutely improve hemodynamic parameters; however, it does not seem to improve longer term clinic...Epinephrine is often used for the treatment of patients with heart failure, low cardiac output and cardiac arrest. It can acutely improve hemodynamic parameters; however, it does not seem to improve longer term clinical outcomes. Therefore, we hypothesized that epinephrine may induce unfavorable changes in gene expression of cardiomyocyte. Thus, we investigated effects of epinephrine exposure on the mediation or modulation of gene expression of cultured cardiomyocytes at a genome-wide scale. Our investigation revealed that exposure of cardiomyocytes to epinephrine in an in vitro environment can up-regulate the expression ofangiopoietin-2 gene (~ 2.1 times), and down-regulate the gene expression of neuregulin 1 (-3.7 times), plasminogen activator inhibitor-1 (-2.4 times) and SPARC-related modular calcium-binding protein-2 (-4.5 times). These changes suggest that epinephrine exposure may induce inhibition of angiogenesis-related gene expressions in cultured rat cardiomyocytes. The precise clinical significance of these changes in gene expression, which was induced by epinephrine exposure, warrants further experimental and clinical investigations.展开更多
High consumption of ethanolic beverages facilitates neurodegeneration, but the mechanism of this process still remained elusive. Suppression subtractive hybridization (SSH) is a technique for detection of rare trans...High consumption of ethanolic beverages facilitates neurodegeneration, but the mechanism of this process still remained elusive. Suppression subtractive hybridization (SSH) is a technique for detection of rare transcripts. With SSH approach, we identified one ethanol response gene Cab45, which was down-regulated by ethanol with time-dependent manner in B104 cells. The full-length sequence of Cab45 gene was obtained by 5'-RACE (5'Rapid Amplification of cDNA Ends) for the first time in rat. Based on the sequence of deduced amino acid of rat Cab45, the alignment was conducted with its counterparts in different species and displayed a high conservation. Using different tissues in rat and cell lines, Cab45 was characterized by a ubiquitous expression and differentiation dependent down-regulation. Given that ethanol facilitates some cell differentiation, we hypothesize that Cab45 is involved in ethanol-mediated differentiation. With transient transfection, the function of Cab45 was investigated by up-regulation and down-regulation in PC12 cells. Ethanol treatment and UV exposure were conducted subsequently and cell proliferations were detected by MTT (Methyl Thiazolyl Tetrazolium) approach. It revealed that the up-regulation of Cab45 modulated the impairment elicited by ethanol and UV in transfected cells. As a member of new calcium binding protein family, the exact role of Cab45 still remains unclear.展开更多
Objective To investigate the cellular localization of parvalbumin (PV), calbindin-D28k (CB) and calretinin (CR) in the monkey basal ganglia.Methods Immunocytochemical technique was used to detect PV,CB and CR immun...Objective To investigate the cellular localization of parvalbumin (PV), calbindin-D28k (CB) and calretinin (CR) in the monkey basal ganglia.Methods Immunocytochemical technique was used to detect PV,CB and CR immunoreactivity in the basal ganglia. Results In the striatum, CB labeled medium-sized spiny projection neurons whereas PV and CR marked two separate classes of aspiny interneurons. The striatal matrix compartment was markedly enriched with CB while striatal patches displayed a CR-rich neuropil. In the pallidum, virtually all neurons contained PV but none express CB. CR occured only in a small subpopulation of large and small pallidal neurons. In the subthalamic nucleus, there existed a multitude of PV-positive cells and fibers but the number of CR and CB-positive neuronal elements was small. In the substantia nigra / ventral tegmental area complex, CB and CR occured principally in dopaminergic neurons of the dorsal tier of the pars compacta and in those of the ventral tegmental area. PV was strickly confined to the GABAergic neurons of the pars reticular and lateralis. CB-rich fibers abounded in the pars reticular and lateralis, while CR-positive axons were confined to the pars compacta. Conclusion CB and PV were distributed according to a strikingly complementary pattern in primate basal ganglia, and the use of CB and PV immunocytochemistry may be considered as an excellent tool to define distinct chemoarchitectonic and functional domains within the complex organization of the basal ganglia. CR was less ubiquitous but occured in small basal ganglia components where it labeled distinct subsets of neurons. Such highly specific patterns of distribution indicate that CB, PV and CR may work in synery within primate basal ganglia.展开更多
Objective:To investigate the protective effect of moxibustion on joints and its influence on the expression levels of S100 calcium binding protein A8(S100A8),S100 calcium binding protein A9(S100A9),serum amyloid A1(SA...Objective:To investigate the protective effect of moxibustion on joints and its influence on the expression levels of S100 calcium binding protein A8(S100A8),S100 calcium binding protein A9(S100A9),serum amyloid A1(SAA1),and related inflammatory factors in rats with adjuvant arthritis(AA).Methods:Forty Wistar rats were randomly divided into a normal group,a model group,a moxibustion group,and a medication group,with 10 rats in each group.Except for the normal group,AA models were established in the other three groups by exposing rats to wind-cold-dampness environmental conditions combined with complete Freund’s adjuvant.After successful modeling,the moxibustion group received moxibustion intervention,while the medication group was administered tripterygium glycosides tablets via oral gavage.The normal and model groups underwent similar handling and fixation without additional interventions.After 15 d of intervention,hematoxylin-eosin staining was used to assess pathological changes in the knee joint synovial membrane.Western blotting was performed to detect the protein expression of S100A8,S100A9,and SAA1 in the synovial tissue.Enzyme-linked immunosorbent assay was used to measure the serum levels of interferon(IFN)-γ,interleukin(IL)-6,and IL-23.Results:Compared to the normal group,the model group exhibited significantly increased protein expression of S100A8,S100A9,and SAA1 in the knee joint synovial tissue,as well as elevated serum levels of IFN-γ,IL-6,and IL-23(P<0.01).Histopathological analysis revealed marked synovial hyperplasia and extensive infiltration of inflammatory cells in the model group.Compared to the model group,both the moxibustion and medication groups showed significant reductions in the protein expression of S100A8,S100A9,and SAA1 in the synovial tissue,as well as decreased serum levels of IFN-γ,IL-6,and IL-23(P<0.01).Additionally,synovial tissue in these two groups displayed minimal hyperplasia and only mild inflammatory cell infiltration.Notably,compared to the moxibustion group,the medication group exhibited significantly higher protein expression of S100A9 in the synovial tissue(P<0.05),while no significant differences were observed in the expression of S100A8,SAA1,or serum levels of IFN-γ,IL-6,and IL-23(P>0.05).Both intervention groups showed comparable degrees of synovial inflammation,clear tissue structure,and no obvious hyperplasia.Conclusion:Moxibustion can alleviate joint swelling and reduce inflammatory responses in AA rats.Its mechanism may involve regulating the protein expression of S100A8,S100A9,and SAA1 in the knee joint synovial tissue.展开更多
Objective The pathogenesis and progression of heart failure(HF)are governed by complex,interconnected biological pathways,with dysregulated immune responses and maladaptive cardiac remodeling playing central roles.Alt...Objective The pathogenesis and progression of heart failure(HF)are governed by complex,interconnected biological pathways,with dysregulated immune responses and maladaptive cardiac remodeling playing central roles.Although specific inflammatory mediators have been implicated in modulating critical features of cardiac remodeling—such as cardiomyocyte hypertrophy and extracellular matrix fibrosis—the precise molecular mechanisms driving these processes remain incompletely characterized.Methods Integrated bioinformatics analysis of HF and hypertrophic cardiomyopathy(HCM)transcriptomic datasets identified pathologically relevant candidate genes.A protein-protein interaction(PPI)network was constructed from these candidates using the STRING database,followed by module analysis.Serum S100 calcium-binding protein A9(S100A9)protein expression in HF patients was quantified by Western blotting under reducing conditions.The functional relevance of prioritized genes was subsequently validated through:(i)in vitro cyclic mechanical stretch in primary neonatal rat cardiomyocytes,and(ii)in vivo pressure overload modeling via transverse aortic constriction(TAC)in mice.Results Bioinformatics analysis of HF and HCM datasets revealed a significant association between immune function and cardiac remodeling.Using CytoNCA,we identified core genes,among which the top 25 included multiple inflammatory pathway-related factors,such as S100A9 and Toll-like receptor 2(TLR2).Notably,S100A9 levels were significantly elevated in the serum of HF patients and in mechanically stretched cardiomyocytes.This increase correlated with upregulated expression of hypertrophy-related markers,including atrial natriuretic peptide(ANP).Furthermore,mechanical stretch-induced S100A9 upregulation markedly enhanced TLR2 expression in cardiomyocytes.Importantly,TLR2 inhibition substantially attenuated the mechanical stretch-induced upregulation of S100A9 mRNA expression,as well as the subsequent hypertrophic and inflammatory responses in cardiomyocytes.Conclusion The inflammatory mediators S100A9 and TLR2 engage in reciprocal activation that amplifies the hypertrophic response in mechanically stretched cardiomyocytes.This pathogenic cross-talk exacerbates maladaptive remodeling and likely accelerates HF progression.展开更多
基金Project supported by the National Natural Science Foundation oX f China(Nos.81371302,81571127,and 31872796)the National Basic Research Program(973)of China(No.2014CB910300)+1 种基金the National Major New Drugs Innovation and Development(No.2018ZX X09711001-004-005)the Zhejiang Provincial Natural Science Foundation of China(Nos.LR16H090001 and LY19B020013)
文摘As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2(TRPM2) channel from Nematostella vectensis(nvTRPM2). This identified a calcium-binding site in the S2–S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2(hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvT RPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2–S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues(glutamate and aspartate) substantially decreased the currents of nvT RPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues(glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2–S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2–S3 loop of TRPM2 on the TRPM2 gating process.
文摘The calcium-binding activity of tilapia scale protein hydrolysates sequentially hydrolyzed by trypsin, flavor enzyme and pepsin were investigated. The hydrolysates were divided into four fractions using G-15 gel chromatography, and the F3 fraction has the higher calcium-binding activity of 196.3 mg/g. The UV-vis and the Fourier transform infrared spectroscopy (FTIR) demonstrate that the amino nitrogen atoms and the oxygen atoms belonging to the carboxylate groups are the primary binding sites for Ca2+. The X-ray diffraction and scanning electron microscopy (SEM) confirmed the reaction between the peptde and calcium. The results obtained indicated that this fish scale protein hydroly-sates have potential as functional foods for calcium-supplementation.
文摘Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission.Given this importance,calcium ions are tightly controlled by a host of molecular players including ion channels,sensors,and buffering proteins.Calcium can act directly by binding to signaling molecules or calcium’s effects can be indirect,for example by altering nuclear histones.
文摘Background: Despite its high prevalence, morbidity, and mortality, sepsis-associated encephalopathy (SAE) is still poorly understood. The aim of this prospective and observational study was to investigate the clinical significance of calcium-binding protein A8 (S 100AS) in serum and tumor necrosis factor receptor-associated factor 6 (TRAF6) in peripheral blood mononuclear cells (PBMCs) in diagnosing SAE and predicting its prognosis. Methods: Data of septic patients were collected within 24 h after Intensive Care Unit admission fi-om July 2014 to March 2015. Healthy medical personnel served as the control group. SAE was defined as cerebral dysfhnction in the presence of sepsis that fulfilled the exclusion criteria. The biochemical indicators, Glasgow Coma Scale, Acute Physiology and Chronic Health Evaluation score II, TRAF6 in PBMC, serum S 100A8, S 10013, and neuron-specific enolase were evaluated in SAE patients afresh. TRAF6 and S 100A8 were also measured in the control group. Results: Of the 57 enrolled patients, 29 were diagnosed with SAE. The S 100A8 and TRAF6 concentrations in SAE patients were both significantly higher than that in no-encephalopathy (NE) patients, and higher in NE than that in controls (3.74 ± 3.13 vs. 1.08 ± 0.75 vs. 0.37 ± 0.14 ng/ml, P 〈 0.01 ; 3.18 ± 1.55 vs. 1.02 ± 0.63 vs. 0.47 ± 0.10, P 〈 0.01). S 100A8 levels of 1.93 ng/ml were diagnostic of SAE with 92.90% specificity and 69.00% sensitivity in the receiver operating characteristic (ROC) curve, and the area under the curve was 0.86 (95% confidence interval [CI]: 0.76-0.95). TRAF6-relative levels of 1.44 were diagnostic of SAE with 85.70% specificity and 86.20% sensitivity, and the area under the curve was 0.94 (95% CI: 0.88-0.99). In addition, S 100A8 levels of 2.41 ng/ml predicted 28-day mortality of SAE with 90.00% specificity and 73.70% sensitivity in the ROC curve, and the area under the curve was 0.88. TRAF6 relative levels of 2.94 predicted 28-day mortality of SAE with 80.00% specificity and 68.40% sensitivity, and the area under the curve was 0.77. Compared with TRAF6, the specificity of serum S 100A8 in diagnosing SAE and predicting mortality was higher, although the sensitivity was low. In contrast, the TRAF6 had higher sensitivity for diagnosis. Conclusions: Peripheral blood levels of S 100A8 and TRAF6 in SAE patients were elevated and might be related to the severity of SAE and predict the outcome of SAE. The efficacy and specificity of S 100A8 for SAE diagnosis were superior, despite its weak sensitivity. S100A8 might be a better biomarker for diagnosis of SAE and predicting prognosis.
文摘The PE_PGRS family of proteins unique to mycobacteria is demonstrated to contain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel β-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the light of macrophage-pathogen interaction and pathogenesis is presented.
文摘Background We investigated the co-expression of calb indin-D28k (CB), calretinin (CR) and parvalbumin (PV, a combination of the three is referred to as CaBPs) with γ-aminobutyric acid (GABA) or glycine in neurons of the rat medullary dorsal horn (MDH).Methods Immunofluorescence histochemical double-staining for CaBPs and GABA or glycine was performed on the sections from rat MDH. Results CB-, CR-, PV-, GABA- and glycine-like immunoreactive (LI) neurons were differentially observed in all layers of the MDH, but particularly in lamina Ⅱ. Neurons that exhibited immunoreactivity for both CaBPs and GABA or glycine were also observed mainly in lamina Ⅱ. A few of them were found in laminae I and III. The percentages of neurons which co-expressed CB/GABA or CB/glycine out of the total numbers of CB- and GABA-LI neurons or CB- and glycine-LI neurons were 5.3% and 12.1% or 4.1% and 10.0%, respectively. The ratios of CR/GABA or CR/glycine co-existing neurons out of the total numbers of CR- and GABA-LI neurons or CR- and glycine-LI neurons were 5.8% and 7.6% or 4.4% and 7.1%, respectively. The rates of PV/GABA or PV/glycine co-localized neurons out of the total numbers of PV- and GABA-LI neurons or PV- and glycine-LI neurons were 11.1% and 5.1% or 9.9% and 5.1%, respectively. Conclusion The results indicate that some neurons in the MDH contain both CaBPs and GABA or glycine.
文摘Aim:The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1(IBA-1)stained brain sections.Methods:The novel method was compared to currently used analysis methods,visual characterization of activation stage and optical density measurement,in brain sections of young and aged rats that had undergone surgery or remained naïve.Results:The cell body to cell size ratio of microglia was strongly correlated to the visual characterization activation stage.In addition,we observed specific surgery and age-related changes in cell body size,size of the dendritic processes and cell body to cell size ratio.Conclusion:The novel analysis method provides a sensitive marker for microglial activation in the rat brain,which is quick and easy to perform and provides additional information about microglial morphology.
基金supported by grants from the Natural Science Foundation of China(81971851 and 82172229)the Natural Science Foundation of Shaanxi Province(2022JM-600)the Foundation of Xijing Hospital Grants(XJZT21CM33).
文摘Background:In plastic surgery,tissue expansion is widely used for repairing skin defects.However,low expansion efficiency and skin rupture caused by thin,expanded skin remain significant challenges in promoting skin regeneration during expansion.S100 calcium-binding protein A9(S100A9)is essential in promoting wound healing;however,its effects on skin regeneration during tissue expansion remain unclear.The aim of the present study was to explore the role of S100A9 in skin regeneration,particularly collagen production to investigate its importance in skin regeneration during tissue expansion.Methods:The expression and distribution of S100A9 and its receptors-toll-like receptor 4(TLR-4)and receptor for advanced glycation end products were studied in expanded skin.These character-istics were investigated in skin samples of rats and patients.Moreover,the expression of S100A9 was investigated in stretched keratinocytes in vitro.The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed.TAK-242 was used to inhibit the binding of S100A9 to TLR-4;the levels of collagen I(COL I),transforming growth factor beta(TGF-β),TLR-4 and phospho-extracellular signal-related kinase 1/2(p-ERK1/2)in fibroblasts were determined.Furthermore,fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I,TGF-β,TLR-4 and p-ERK1/2 in fibroblasts were investigated.Additionally,the area of expanded skin,thickness of the dermis,and synthesis of COL I,TGF-β,TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin.Results:Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix(ECM)in the expanded dermis.Furthermore,S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-βin fibroblasts via the TLR-4/ERK1/2 pathway.We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I,TGF-β,TLR-4 and p-ERK1/2 expression in skin fibroblasts.Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion.Conclusions:These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression.Our study laid the foundation for clinically improving tissue expansion using S100A9.
文摘BACKGROUND Colorectal cancer(CRC)ranks among the most prevalent malignancies in elderly populations,and chemotherapy resistance remains a critical clinical challenge.Emerging evidence highlights the interplay between chronic inflammation,gut microbiome dysbiosis,and CRC progression.Proinflammatory cytokines[e.g.,interleukin(IL)-6,tumor necrosis factor-alpha(TNF-α)]and mediators like S100 calcium-binding protein A12(S100A12)/soluble receptor for advanced glycation end products(sRAGE)are implicated in tumorigenesis,while gut microbial imbalances may exacerbate inflammatory microenvironments conducive to che-motherapy resistance.However,the triad relationship between S100A12/sRAGE,gut microbiota profiles,and chemotherapy efficacy in elderly patients with CRC remains unexplored,limiting biomarker-driven therapeutic strategies.AIM To analyze the correlation between serum levels of S100A12,sRAGE,gut microbiome dysbiosis,and systemic inflammation in elderly patients with CRC and to assess their predictive value for chemotherapy efficacy.METHODS A retrospective analysis was conducted on the clinical data of 120 elderly patients with advanced-stage CRC who visited our hospital from August 2023 to May 2024.These patients were enrolled in the study group.Additionally,120 healthy individuals undergoing routine health check-ups during the same period were selected as the control group.Serum S100A12,sRAGE,IL-6,and TNF-αlevels were measured by ELISA,and fresh stool samples were collected before chemotherapy to analyze gut microbiome composition in the study group.Follow-up observations were conducted after chemotherapy.Pearson correlation analysis was used to explore the relationship between serum S100A12,sRAGE levels,and gut microbiome dysbiosis in patients with CRC.The predictive diagnostic value of pre-chemotherapy serum S100A12 and sRAGE levels for chemotherapy efficacy was assessed using receiver operating characteristic curves.RESULTS Pre-chemotherapy serum S100A12,sRAGE,IL-6,and TNF-αlevels were significantly elevated in patients with CRC vs controls(all P<0.05).These biomarkers progressively increased with microbiota dysbiosis severity(severe vs mild dysbiosis:S100A12:340.26±52.39μg/L vs 302.53±56.97μg/L;sRAGE:525.64±37.32 ng/L vs 441.38±48.73 ng/L,P<0.05)and correlated strongly with IL-6(r=0.712)and TNF-α(r=0.698).Post-chemotherapy,biomarker levels decreased(P<0.05),coinciding with beneficial microbiota recovery(Bifidobacterium 176%,Lactobacillus 153%)and pathogenic taxa reduction(Escherichia coli 62%).The combined S100A12/sRAGE model predicted chemotherapy resistance with an area under the curve of 0.914(sensitivity=86.07%,specificity=88.89%),outper-forming individual biomarkers.CONCLUSION Elevated serum S100A12 and sRAGE in elderly patients with CRC reflected gut microbiome dysbiosis and systemic inflammation,driven by IL-6/TNF-αsignaling.Their post-chemotherapy decline parallels microbiota restoration,supporting a microbiome-inflammation-biomarker axis.The combined biomarker model offers robust clinical utility for chemotherapy efficacy prediction and personalized therapeutic strategies.
基金supported by the National Natural Science Foundation of China(82020108025,82022061)the Chongqing Natural Science Foundation(cstc2021jcyj-jqX0004,cstb2022nscq-msx0179)the Clinical Research Funding of the Second Affiliated Hospital of the Army Medical(2023XKRC008,2022YQB010).
文摘Background:With the increasing risk of nuclear exposure,more attention has been paid to the prevention and treatment of acute radiation syndrome(ARS).Although amino acids are key nutrients involved in hematopoietic regulation,the impacts of amino acids on bone marrow hematopoiesis following irradiation and the associated mechanisms have not been fully elucidated.Hence,it is of paramount importance to study the changes in amino acid metabolism after irradiation and their effects on hematopoiesis as well as the related mechanisms.Methods:The content of serum amino acids was analyzed using metabolomic sequencing.The survival rate and body weight of the irradiated mice were detected after altering the methionine content in the diet.Extracellular matrix(ECM)protein analysis was performed via proteomics analysis.Inflammatory factors were examined by enzyme-linked immunosorbent assay(ELISA).Flow cytometry,Western blotting,and immunofluorescence were employed to determine the mechanism by which S100 calcium-binding protein A4(S100A4)regulates macrophage polarization.Results:The survival time of irradiated mice was significantly associated with alterations in multiple amino acids,particularly methionine.A high methionine diet promoted irradiation tolerance,especially in the recovery of bone marrow hematopoiesis,yet with dose limitations.Folate metabolism could partially alleviate the dose bottleneck by reducing the accumulation of homocysteine.Mechanistically,high methionine levels maintained the abundance of ECM components,including collagens and glycoproteins,in the bone marrow post-irradiation,among which the level of S100A4 was significantly changed.S100A4 regulated macrophage polarization via the STAT3 pathway,inhibited bone marrow inflammation and facilitated the proliferation and differentiation of hematopoietic stem/progenitor cells.Conclusions:We have demonstrated that an appropriate elevation in dietary methionine enhances irradiation tolerance in mice and explains the mechanism by which methionine regulates bone marrow hematopoiesis after irradiation.
基金Supported by the National Natural Science Foundation of China(Nos.32172954,32373121)the Key Research and Development Project of Hebei Province(No.22323201D)+2 种基金the Science and Technology Project of Hebei Education Department(No.ZD 2022093)the Natural Science Foundation of Hebei Province(Nos.D2022201003,D2023201002)the Hangzhou Qianjiang Special Expert fund for Prof.Jiquan ZHANG。
文摘The body surface of crustaceans is covered with a sturdy shell.The growth and development of crustaceans are realized through molting.Neocaridina denticulata sinensis is a suitable candidate for crustacean scientific research.Two calcium-associated cuticular protein genes,named NdCAP-1 and NdCAP-2,were obtained from N.denticulata sinensis.Molecular docking simulated the binding effect of both proteins and calcium ions.Semi-quantitative reverse transcription PCR results show that NdCAP-1 is expressed in D_(2-4) stage,NdCAP-2 expressed in D_(2-4) and A-B stages,and both were significantly expressed in the cephalothorax cuticle and pereiopods.Then,it was revealed that NdCAP-1 and NdCAP-2 are regulated by NdEcR-mediated 20 E signaling pathways.Knockdown of NdCAP-1 and NdCAP-2 was observed to cause surface defects.The recombinant proteins(rNdCAP-1 and rNdCAP-2),obtained by prokaryotic expression,had calcium-binding and chitin-binding ability,inhibited formation of calcium carbonate precipitate.These results show that calcium-associated cuticular proteins play important roles in cuticle formation and calcification.
基金supported by grants from the National Natural Science Foundation of China(8163009&81973298,and 81821091).
文摘Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain.Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons.Calretinin(CR)is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons.The functions of CR and its role in neural excitability are still unknown.Recent data suggest that CR neurons have diverse neurotransmitters,morphologies,distributions,and functions in different brain regions across various species.Notably,CR neurons in the hippocampus,amygdala,neocortex,and thalamus are extremely susceptible to excitotoxicity in the epileptic brain,but the causal relationship is unknown.In this review,we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy.Importantly,we provide perspectives on future investigations of the role of CR neurons in epilepsy.
基金United States Department of Veterans Affairs,VA Merit Grant,No.BX002695United States National Institute of Health,No.R01AG055359,No.R01GM126181 and No.R01NS39041-15.
文摘BACKGROUND Acute pancreatitis(AP)and recurring AP are serious health care problems causing excruciating pain and potentially lethal outcomes due to sepsis.The validated caerulein-(CAE)induced mouse model of acute/recurring AP produces secondary persistent hypersensitivity and anxiety-like behavioral changes for study.AIM To determine efficacy of acetyl-L-carnitine(ALC)to reduce pain-related behaviors and brain microglial activation along the pain circuitry in CAE-pancreatitis.METHODS Pancreatitis was induced with 6 hly intraperitoneal(i.p.)injections of CAE(50μg/kg),3 d a week for 6 wk in male C57BL/6J mice.Starting in week 4,mice received either vehicle or ALC until experiment’s end.Mechanical hypersensitivity was assessed with von Frey filaments.Heat hypersensitivity was determined with the hotplate test.Anxiety-like behavior was tested in week 6 using elevated plus maze and open field tests.Microglial activation in brain was quantified histologically by immunostaining for ionized calcium-binding adaptor molecule 1(Iba1).RESULTS Mice with CAE-induced pancreatitis had significantly reduced mechanical withdrawal thresholds and heat response latencies,indicating ongoing pain.Treatment with ALC attenuated inflammation-induced hypersensitivity,but hypersensitivity due to abdominal wall injury caused by repeated intraperitoneal injections persisted.Animals with pancreatitis displayed spontaneous anxiety-like behavior in the elevated plus maze compared to controls.Treatment with ALC resulted in increased numbers of rearing activity events,but time spent in“safety”was not changed.After all the abdominal injections,pancreata were translucent if excised at experiment’s end and opaque if excised on the subsequent day,indicative of spontaneous healing.Post mortem histopathological analysis performed on pancreas sections stained with Sirius Red and Fast Green identified wide-spread fibrosis and acinar cell atrophy in sections from mice with CAE-induced pancreatitis that was not rescued by treatment with ALC.Microglial Iba1 immunostaining was significantly increased in hippocampus,thalamus(intralaminar nuclei),hypothalamus,and amygdala of mice with CAE-induced pancreatitis compared to naïve controls but unchanged in the primary somatosensory cortex compared to naïves.CONCLUSION CAE-induced pancreatitis caused increased pain-related behaviors,pancreatic fibrosis,and brain microglial changes.ALC alleviated CAE-induced mechanical and heat hypersensitivity but not abdominal wall injury-induced hypersensitivity caused by the repeated injections.
基金supported by Brazilian funding agencies CNPq,CAPES and FAPERGS
文摘Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the development and progression of several neurological diseases. Likewise, astrocytic reactivity-a wellknown process that markedly influences the tissue remodeling after a central nervous system injury-is crucial for tissue remodeling after spinal cord injury(SCI). However, the linkage between the above-mentioned mechanisms after SCI remains poorly understood. We sought to investigate the relation between both glial fibrillary acidic protein(GFAP) and S100 calcium-binding protein B(S100B)(astrocytic reactivity classical markers) and global histone H4 acetylation levels. Sixty-one male Wistar rats(aged ~3 months) were divided into the following groups: sham; 6 hours post-SCI; 24 hours post-SCI; 48 hours post-SCI; 72 hours post-SCI; and 7 days post-SCI. The results suggested that GFAP, but not S100B was associated with global histone H4 acetylation levels. Moreover, global histone H4 acetylation levels exhibited a complex pattern after SCI, encompassing at least three clearly defined phases(first phase: no changes in the 6, 24 and 48 hours post-SCI groups; second phase: increased levels in the 72 hours post-SCI group; and a third phase: return to levels similar to control in the 7 days post-SCI group). Overall, these findings suggest global H4 acetylation levels exhibit distinct patterns of expression during the first week post-SCI, which may be associated with GFAP levels in the perilesional tissue. Current data encourage studies using H4 acetylation as a possible biomarker for tissue remodeling after spinal cord injury.
基金supported in part by the National Natural Science Foundation of China,Nos.81971151(to YW),82201360(to XC),82102583(to LW),and 82202739(to GPM)China Postdoctoral Science Foundation,Nos.YJ20210208 and 2022M713592+2 种基金Guangdong Basic and Applied Basic Research Foundation,China,No.2021A1515110188(to XC)the Natural Science Foundation of Guangdong Province,China,No.2020A1515010306(to LW)the Science and Technology Program of Guangzhou,China,No.202102020040(to LW)。
文摘Experimental studies have shown that exercise and human adipose-derived stem cells(ADSCs)play positive roles in spinal cord injury(SCI).However,whether ADSCs and/or exercise have a positive effect on SCI-induced neuropathic pain is still unclear.Thus,there is a need to explore the effects of exercise combined with administration of ADSCs on neuropathic pain after SCI.In this study,a thoracic 11(T11)SCI contusion model was established in adult C57BL/6 mice.Exercise was initiated from 7 days post-injury and continued to 28 days post-injury,and approximately 1×105 ADSCs were transplanted into the T11 spinal cord lesion site immediately after SCI.Motor function and neuropathic pain-related behaviors were assessed weekly using the Basso Mouse Scale,von Frey filament test,Hargreaves method,and cold plate test.Histological studies(Eriochrome cyanine staining and immunohistochemistry)were performed at the end of the experiment(28 days post-injury).Exercise combined with administration of ADSCs partially improved early motor function(7,14,and 21 days postinjury),mechanical allodynia,mechanical hypoalgesia,thermal hyperalgesia,and thermal hypoalgesia.Administration of ADSCs reduced white and gray matter loss at the lesion site.In addition,fewer microglia and astrocytes(as identified by expression of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein,respectively)were present in the lumbar dorsal horn in the SCI+ADSCs and SCI+exercise+ADSCs groups compared with the sham group.Our findings suggest that exercise combined with administration of ADSCs is beneficial for the early recovery of motor function and could partially ameliorate SCIinduced neuropathic pain.
基金supported by internal funding from the Department of Anesthesiology and Perioperative Medicine
文摘Epinephrine is often used for the treatment of patients with heart failure, low cardiac output and cardiac arrest. It can acutely improve hemodynamic parameters; however, it does not seem to improve longer term clinical outcomes. Therefore, we hypothesized that epinephrine may induce unfavorable changes in gene expression of cardiomyocyte. Thus, we investigated effects of epinephrine exposure on the mediation or modulation of gene expression of cultured cardiomyocytes at a genome-wide scale. Our investigation revealed that exposure of cardiomyocytes to epinephrine in an in vitro environment can up-regulate the expression ofangiopoietin-2 gene (~ 2.1 times), and down-regulate the gene expression of neuregulin 1 (-3.7 times), plasminogen activator inhibitor-1 (-2.4 times) and SPARC-related modular calcium-binding protein-2 (-4.5 times). These changes suggest that epinephrine exposure may induce inhibition of angiogenesis-related gene expressions in cultured rat cardiomyocytes. The precise clinical significance of these changes in gene expression, which was induced by epinephrine exposure, warrants further experimental and clinical investigations.
文摘High consumption of ethanolic beverages facilitates neurodegeneration, but the mechanism of this process still remained elusive. Suppression subtractive hybridization (SSH) is a technique for detection of rare transcripts. With SSH approach, we identified one ethanol response gene Cab45, which was down-regulated by ethanol with time-dependent manner in B104 cells. The full-length sequence of Cab45 gene was obtained by 5'-RACE (5'Rapid Amplification of cDNA Ends) for the first time in rat. Based on the sequence of deduced amino acid of rat Cab45, the alignment was conducted with its counterparts in different species and displayed a high conservation. Using different tissues in rat and cell lines, Cab45 was characterized by a ubiquitous expression and differentiation dependent down-regulation. Given that ethanol facilitates some cell differentiation, we hypothesize that Cab45 is involved in ethanol-mediated differentiation. With transient transfection, the function of Cab45 was investigated by up-regulation and down-regulation in PC12 cells. Ethanol treatment and UV exposure were conducted subsequently and cell proliferations were detected by MTT (Methyl Thiazolyl Tetrazolium) approach. It revealed that the up-regulation of Cab45 modulated the impairment elicited by ethanol and UV in transfected cells. As a member of new calcium binding protein family, the exact role of Cab45 still remains unclear.
文摘Objective To investigate the cellular localization of parvalbumin (PV), calbindin-D28k (CB) and calretinin (CR) in the monkey basal ganglia.Methods Immunocytochemical technique was used to detect PV,CB and CR immunoreactivity in the basal ganglia. Results In the striatum, CB labeled medium-sized spiny projection neurons whereas PV and CR marked two separate classes of aspiny interneurons. The striatal matrix compartment was markedly enriched with CB while striatal patches displayed a CR-rich neuropil. In the pallidum, virtually all neurons contained PV but none express CB. CR occured only in a small subpopulation of large and small pallidal neurons. In the subthalamic nucleus, there existed a multitude of PV-positive cells and fibers but the number of CR and CB-positive neuronal elements was small. In the substantia nigra / ventral tegmental area complex, CB and CR occured principally in dopaminergic neurons of the dorsal tier of the pars compacta and in those of the ventral tegmental area. PV was strickly confined to the GABAergic neurons of the pars reticular and lateralis. CB-rich fibers abounded in the pars reticular and lateralis, while CR-positive axons were confined to the pars compacta. Conclusion CB and PV were distributed according to a strikingly complementary pattern in primate basal ganglia, and the use of CB and PV immunocytochemistry may be considered as an excellent tool to define distinct chemoarchitectonic and functional domains within the complex organization of the basal ganglia. CR was less ubiquitous but occured in small basal ganglia components where it labeled distinct subsets of neurons. Such highly specific patterns of distribution indicate that CB, PV and CR may work in synery within primate basal ganglia.
文摘Objective:To investigate the protective effect of moxibustion on joints and its influence on the expression levels of S100 calcium binding protein A8(S100A8),S100 calcium binding protein A9(S100A9),serum amyloid A1(SAA1),and related inflammatory factors in rats with adjuvant arthritis(AA).Methods:Forty Wistar rats were randomly divided into a normal group,a model group,a moxibustion group,and a medication group,with 10 rats in each group.Except for the normal group,AA models were established in the other three groups by exposing rats to wind-cold-dampness environmental conditions combined with complete Freund’s adjuvant.After successful modeling,the moxibustion group received moxibustion intervention,while the medication group was administered tripterygium glycosides tablets via oral gavage.The normal and model groups underwent similar handling and fixation without additional interventions.After 15 d of intervention,hematoxylin-eosin staining was used to assess pathological changes in the knee joint synovial membrane.Western blotting was performed to detect the protein expression of S100A8,S100A9,and SAA1 in the synovial tissue.Enzyme-linked immunosorbent assay was used to measure the serum levels of interferon(IFN)-γ,interleukin(IL)-6,and IL-23.Results:Compared to the normal group,the model group exhibited significantly increased protein expression of S100A8,S100A9,and SAA1 in the knee joint synovial tissue,as well as elevated serum levels of IFN-γ,IL-6,and IL-23(P<0.01).Histopathological analysis revealed marked synovial hyperplasia and extensive infiltration of inflammatory cells in the model group.Compared to the model group,both the moxibustion and medication groups showed significant reductions in the protein expression of S100A8,S100A9,and SAA1 in the synovial tissue,as well as decreased serum levels of IFN-γ,IL-6,and IL-23(P<0.01).Additionally,synovial tissue in these two groups displayed minimal hyperplasia and only mild inflammatory cell infiltration.Notably,compared to the moxibustion group,the medication group exhibited significantly higher protein expression of S100A9 in the synovial tissue(P<0.05),while no significant differences were observed in the expression of S100A8,SAA1,or serum levels of IFN-γ,IL-6,and IL-23(P>0.05).Both intervention groups showed comparable degrees of synovial inflammation,clear tissue structure,and no obvious hyperplasia.Conclusion:Moxibustion can alleviate joint swelling and reduce inflammatory responses in AA rats.Its mechanism may involve regulating the protein expression of S100A8,S100A9,and SAA1 in the knee joint synovial tissue.
基金supported by the National Key Research and Development Program of China(No.2023YFC2506504)the National Natural Science Foundation of China(No.82370255,and No.U24A20646)the Shanghai Science and Technology Commission Project(No.23410761200).
文摘Objective The pathogenesis and progression of heart failure(HF)are governed by complex,interconnected biological pathways,with dysregulated immune responses and maladaptive cardiac remodeling playing central roles.Although specific inflammatory mediators have been implicated in modulating critical features of cardiac remodeling—such as cardiomyocyte hypertrophy and extracellular matrix fibrosis—the precise molecular mechanisms driving these processes remain incompletely characterized.Methods Integrated bioinformatics analysis of HF and hypertrophic cardiomyopathy(HCM)transcriptomic datasets identified pathologically relevant candidate genes.A protein-protein interaction(PPI)network was constructed from these candidates using the STRING database,followed by module analysis.Serum S100 calcium-binding protein A9(S100A9)protein expression in HF patients was quantified by Western blotting under reducing conditions.The functional relevance of prioritized genes was subsequently validated through:(i)in vitro cyclic mechanical stretch in primary neonatal rat cardiomyocytes,and(ii)in vivo pressure overload modeling via transverse aortic constriction(TAC)in mice.Results Bioinformatics analysis of HF and HCM datasets revealed a significant association between immune function and cardiac remodeling.Using CytoNCA,we identified core genes,among which the top 25 included multiple inflammatory pathway-related factors,such as S100A9 and Toll-like receptor 2(TLR2).Notably,S100A9 levels were significantly elevated in the serum of HF patients and in mechanically stretched cardiomyocytes.This increase correlated with upregulated expression of hypertrophy-related markers,including atrial natriuretic peptide(ANP).Furthermore,mechanical stretch-induced S100A9 upregulation markedly enhanced TLR2 expression in cardiomyocytes.Importantly,TLR2 inhibition substantially attenuated the mechanical stretch-induced upregulation of S100A9 mRNA expression,as well as the subsequent hypertrophic and inflammatory responses in cardiomyocytes.Conclusion The inflammatory mediators S100A9 and TLR2 engage in reciprocal activation that amplifies the hypertrophic response in mechanically stretched cardiomyocytes.This pathogenic cross-talk exacerbates maladaptive remodeling and likely accelerates HF progression.