A simplified CaO-V_(2)O_(5)-MnO_(2) system was established to qualitatively and quantitatively investigate the transformation behavior of vanadates.The results demonstrated dynamic transformations between calcium vana...A simplified CaO-V_(2)O_(5)-MnO_(2) system was established to qualitatively and quantitatively investigate the transformation behavior of vanadates.The results demonstrated dynamic transformations between calcium vanadate and manganese vanadate as n(CaO)/n(V_(2)O_(5))/n(MnO_(2))ratios and roasting temperatures varied.When MnO_(2) was incrementally added with n(CaO)/n(V_(2)O_(5))of 2,some Ca_(2)V_(2)O_(7) converted to Mn_(2)V_(2)O_(7).The mass of vanadium as calcium vanadate consistently exceeded that as manganese vanadate.Conversely,when CaO was gradually added with n(MnO_(2))/n(V_(2)O_(5))of 2,Mn_(2)V_(2)O_(7) tended to transform into Ca_(2)V_(2)O_(7) and Ca3V2O8.The affinity of vanadium for calcium was higher compared that of vanadium for manganese.The specific type of calcium vanadate formed depended on both n(CaO)/n(V_(2)O_(5))/n(MnO_(2))values and roasting temperatures,while manganese vanadate remained predominantly as Mn_(2)V_(2)O_(7).The influence of roasting temperature on the conversion between calcium vanadate and manganese vanadate was minimal.At n(CaO)/n(V_(2)O_(5))/n(MnO_(2))of 2/1/2 and temperatures ranging from 650 to 850°C,the mass ratio of vanadium present as calcium vanadate to manganese vanadate stabilized at approximately 2.展开更多
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. T...The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.展开更多
The chemical composition of vanadium slag significantly affects its element distribution and phase composition,which affect the subsequent calcification roasting process and vanadium recovery.In this work,seven kinds ...The chemical composition of vanadium slag significantly affects its element distribution and phase composition,which affect the subsequent calcification roasting process and vanadium recovery.In this work,seven kinds of vanadium slags derived from different regions in China were used as the raw materials to study the effects of different components on the vanadium slag’s elements distribution,phase composition,calcification roasting,and leaching rate of major elements using scanning electron microscope,X-ray diffraction analysis,and inductively coupled plasma-optical emission spectroscopy.The results show that the spinel phase is wrapped with silicate phase in all vanadium slag samples.The main elements in the spinel phase are Cr,V,and Ti from the interior to the exterior.The size of spinel phase in low chromium vanadium slag is larger than the other vanadium slags with higher chromium contents.The spinel phase of high-calcium and high-phosphorus vanadium slag is more dispersed.The strongest diffraction peak of vanadium spinel phase in the vanadium slag migrates to a higher diffraction angle,and(Fe_(0.6)Cr_(0.4))_(2)O_(3)is formed after calcification roasting as the chromium content increased.A large amount of Ca_(2)SiO_(4)is produced because excess Ca reacts with Si in high-calcium and high-phosphorus vanadium slag.The vanadium leaching rate reaches 88%in some vanadium slags.The chromium leaching rate is less than 5%in all vanadium slags.The silicon leaching rate of high-calcium and high-phosphorus vanadium slag is much higher than that of the other slags.The leaching rate of manganese is higher than 10%,and the leaching rates of iron and titanium are negligible.展开更多
基金finally supported by the National Natural Science Foundation of China (Nos.52204309,52174277,52374300)。
文摘A simplified CaO-V_(2)O_(5)-MnO_(2) system was established to qualitatively and quantitatively investigate the transformation behavior of vanadates.The results demonstrated dynamic transformations between calcium vanadate and manganese vanadate as n(CaO)/n(V_(2)O_(5))/n(MnO_(2))ratios and roasting temperatures varied.When MnO_(2) was incrementally added with n(CaO)/n(V_(2)O_(5))of 2,some Ca_(2)V_(2)O_(7) converted to Mn_(2)V_(2)O_(7).The mass of vanadium as calcium vanadate consistently exceeded that as manganese vanadate.Conversely,when CaO was gradually added with n(MnO_(2))/n(V_(2)O_(5))of 2,Mn_(2)V_(2)O_(7) tended to transform into Ca_(2)V_(2)O_(7) and Ca3V2O8.The affinity of vanadium for calcium was higher compared that of vanadium for manganese.The specific type of calcium vanadate formed depended on both n(CaO)/n(V_(2)O_(5))/n(MnO_(2))values and roasting temperatures,while manganese vanadate remained predominantly as Mn_(2)V_(2)O_(7).The influence of roasting temperature on the conversion between calcium vanadate and manganese vanadate was minimal.At n(CaO)/n(V_(2)O_(5))/n(MnO_(2))of 2/1/2 and temperatures ranging from 650 to 850°C,the mass ratio of vanadium present as calcium vanadate to manganese vanadate stabilized at approximately 2.
基金Project(51304245)supported by the National Natural Science Foundation of ChinaProject(2014T70691)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.
基金financially supported by the National Natural Science Foundation of China (No. 51874077)the Opening Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, China (No. 2019P4FZG00A)
文摘The chemical composition of vanadium slag significantly affects its element distribution and phase composition,which affect the subsequent calcification roasting process and vanadium recovery.In this work,seven kinds of vanadium slags derived from different regions in China were used as the raw materials to study the effects of different components on the vanadium slag’s elements distribution,phase composition,calcification roasting,and leaching rate of major elements using scanning electron microscope,X-ray diffraction analysis,and inductively coupled plasma-optical emission spectroscopy.The results show that the spinel phase is wrapped with silicate phase in all vanadium slag samples.The main elements in the spinel phase are Cr,V,and Ti from the interior to the exterior.The size of spinel phase in low chromium vanadium slag is larger than the other vanadium slags with higher chromium contents.The spinel phase of high-calcium and high-phosphorus vanadium slag is more dispersed.The strongest diffraction peak of vanadium spinel phase in the vanadium slag migrates to a higher diffraction angle,and(Fe_(0.6)Cr_(0.4))_(2)O_(3)is formed after calcification roasting as the chromium content increased.A large amount of Ca_(2)SiO_(4)is produced because excess Ca reacts with Si in high-calcium and high-phosphorus vanadium slag.The vanadium leaching rate reaches 88%in some vanadium slags.The chromium leaching rate is less than 5%in all vanadium slags.The silicon leaching rate of high-calcium and high-phosphorus vanadium slag is much higher than that of the other slags.The leaching rate of manganese is higher than 10%,and the leaching rates of iron and titanium are negligible.