Gonghe bridge is a double level cable-stayed concrete bridge with a single-cable-plane of single cable tower. Its span is 114+120 m and a whole length of 236 m. The gliding scaffold equipment is used for the first tim...Gonghe bridge is a double level cable-stayed concrete bridge with a single-cable-plane of single cable tower. Its span is 114+120 m and a whole length of 236 m. The gliding scaffold equipment is used for the first time in the long span cable-stayed bridge construction to reduce the construction time limit. In the process of construction, to make sure a safe connection among concrete objects with different ages, the single-supporting and single-suspension system is adopted before the concrete pouring. While the double-supporting and single-suspension system is applied after con- crete pouring. These construction systems with gliding scaffold equipment are first introduced in long span ca- ble-stayed bridge and presented in detail[1]. The practice shows that these gliding scaffold systems have many advan- tages over the traditional ones.展开更多
Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge co...Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.展开更多
This paper conducts practical research on the application of steel fiber reinforced concrete construction technology in road and bridge engineering.The study emphasized in its core advantages of tensile strength,impac...This paper conducts practical research on the application of steel fiber reinforced concrete construction technology in road and bridge engineering.The study emphasized in its core advantages of tensile strength,impact resistance,fatigue resistance and high toughness,and introduces its applications in scenarios such as bridge deck pavement,expansion joints and tunnel opening sections.The key points of construction techniques such as material ratio and fiber selection,mixing,pouring and vibration,as well as quality control difficulties and solutions such as steel fiber dispersion,shrinkage cracks and temperature control was analyzed.The development trends of intelligent material research and development and automated construction technology,and propose application suggestions for engineering design and construction management was discussed in this study,which can serve as a references to improve the quality of road and bridge engineering.展开更多
Cable-stayed bridge is a kind of bridge under bending pressure and tension of supporting system. The main stressed component of this kind of bridge is stay cable, which plays a vital role in the whole bridge structure...Cable-stayed bridge is a kind of bridge under bending pressure and tension of supporting system. The main stressed component of this kind of bridge is stay cable, which plays a vital role in the whole bridge structure. Based on this, this paper takes the D1 cable-stayed bridge project of Malaysia Coastal Avenue as an example to deeply explore the construction technology of parallel steel cable stayed cables of long-span cable-stayed bridges, aiming at providing scientific construction technology support for the construction of cable-stayed bridges and ensuring the quality of bridge construction.展开更多
Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of st...Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.展开更多
A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests...A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.展开更多
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ...Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.展开更多
To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements ...To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.展开更多
The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In ...The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.展开更多
A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses...A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses of this conceptual deck system. The FEA results are compared to those of the traditional full-depth precast concrete deck panel system. The comparison results show that the mechanical behavior of the new deck system is different from that of the traditional deck system. The concrete decks in the new system act as two-way slabs, instead of the one-way slab in the traditional system. Meanwhile, the connections in both the longitudinal and transverse direc- tions may need to accommodate the negative moments. Compared to those in the traditional system, the longitu- dinal nominal stress at middle span increases a lot in the new deck system and the effective flange width varies significantly. In addition, the dynamic results show that the impact factor is influenced by the spacing of connections. Finally, some design concerns of the new deck system are proposed.展开更多
Sutong Bridge tower which is 300.4 m is the highest one in the world.The tower anchor area uses the steel-concrete composite structure,its structure and the stress mechanism are complex,so it must be paid more attenti...Sutong Bridge tower which is 300.4 m is the highest one in the world.The tower anchor area uses the steel-concrete composite structure,its structure and the stress mechanism are complex,so it must be paid more attention to the structure durable issue.The 300 m height makes the tower quite sensitive to the environmental factors such as wind and temperature.The wind resistance safety of tower in construction stage is especially important.In this paper,the design of composite structure is introduced.The key technologies of tower geometry control and wind resistance in construction stage are analyzed.展开更多
The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper...The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper, a finite element method (FEM) model is set up to study the effects of concrete differential aging time on the construction phases of the Fenghua River Bridge by calculating the vertical displacement of the folding segment of the middle span and the longitudinal bending moment of Pier 12#. In the model, the girders are classified into 150 changing sections based on the desgn scheme, and their construction is to be carried in 16 phases respectively to build 12 blocks connected by a side folding segment and a middle folding segment, covered with a second dead load and in completion for 20 years. It is found that the internal forces and deformations of the concrete structures at the aging time of 60 d are quite different from those of 0 d aging time while the behaviors of the structures of 120 d aging time is nearly the same as those of 60 d aging time― the differences are so small that can be neglected, suggesting that the creep develops obviously about one month after the cement is hardened and the development fades later on.展开更多
This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with cer...This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.展开更多
Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotec...Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.展开更多
In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state wh...In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.展开更多
There are many potential sources of risks which may cause bridge failures and result in numerous economic and human losses during the construction of bridges. Therefore,risk assessment for bridges during construction ...There are many potential sources of risks which may cause bridge failures and result in numerous economic and human losses during the construction of bridges. Therefore,risk assessment for bridges during construction should be taken rigorously to avert bridge failures and casualties. This article presents a fuzzy logic-based method which integrates the fuzzy analytical hierarchy process( FAHP) method based on a 3-point scale,fuzzy logic,and fuzzy set theory into a single synthetic method. In this method,the FAHP method based on a 3-point scale was used to identify and rank diverse risk factors,and fuzzy logic and fuzzy set theory were used to process inaccurate datasets including non-statistical information. After the concept and procedure of the FAHP method based on a 3-point scale were demonstrated,the proposed fuzzy logic-based method was used to perform risk assessment on the Aizhai Suspension Bridge with a main span length of1 176 m in China. The results show that the proposed method can more effectively carry out risk assessment of bridges during construction.展开更多
The Sutong Yangtze River Bridge(short as Sutong Bridge)is now the largest span cable-stayed bridge in the world.The construction of the superstructure of the middle bridge covered several stages including erection of ...The Sutong Yangtze River Bridge(short as Sutong Bridge)is now the largest span cable-stayed bridge in the world.The construction of the superstructure of the middle bridge covered several stages including erection of the big block girders for the side span,assistant span and tower area,erection of standard girders and closure of the middle span.The big block girders were hoisted by a floating crane,and the standard girders were hoisted by a double crane system on the deck.The pushing assistant method was adopted for the middle span closure construction.Furthermore,key technologies and innovative methods used in the processes of girder erection and cable assemblage in all stages were expatiated systematically.An all-stage self-adaptive geometry control method was used in the construction process.By accurately controlling the unstressed dimensions and shape of all structural components in each step,and realization that the control system and the controlled system adapt to each other,the goal was to make control of the final line shape and inner force of the bridge structure achievable.Two solutions,including GPS based and total station based dynamic geometry monitoring systems,were used to resolve the measure problem under the wide-range of wind-induced vibrations in the long cantilever state.Finally,research on the wind-induced vibration of the superstructure during the construction period was executed.Buffeting response analysis to the longest single and double cantilever states were carried out.The analysis and evaluation of wind resistance safety of the main girders under the longest single cantilever state was made,and corresponding wind resistance measures were suggested.The as-built geometric error and cable force error were controlled in a required design range,and this whole technological achievement can be a benchmark for construction of other large span cable-stayed bridges in the future.展开更多
Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main c...Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.展开更多
The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small river...The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small rivers and was designed principally with the environment in mind. The bridge length is over 356 m, and the width of the decks is 11.5 m. For the bridge works, a simple conventional falsework system was chosen with steel frames for the supports and steel rolled beams for the decks. The formwork was constructed in solid timber and plywood as multiple-use panels. The falsework was designed in order to build the two 10-span bridge decks in stages. The decks are continuous cast-in-situ prestressed concrete twin rib with spans of 30 m, 34 m and 45 m. An individual falsework system was designed, which was easy to move transversally following completion of each stage for one deck. After finishing each stage, for the second deck, the falsework was dismantled and used again in the next construction fronts. An individual arrangement for the falsework along with timber pilings was used to cross the biggest river. The formwork timber panels were used several times in the multistage bridge construction. The adopted falsework system is very simple, but it allowed the speedy construction of the two decks where there were severe time constraints.展开更多
In the process of construction of municipal roads and bridges,it is especially important for the construction of waterproof roadbed.If the leakage of waterproof foundation surface will inevitably lead to the impact of...In the process of construction of municipal roads and bridges,it is especially important for the construction of waterproof roadbed.If the leakage of waterproof foundation surface will inevitably lead to the impact of the quality of roads and bridges,not only the economic and social benefits of the enterprise be lost but also threaten the safety of pedestrians'lives and property.Therefore,this paper analyzes the influencing factors in the waterproof roadbed surface of municipal road bridge construction,and proposes corresponding solutions.展开更多
文摘Gonghe bridge is a double level cable-stayed concrete bridge with a single-cable-plane of single cable tower. Its span is 114+120 m and a whole length of 236 m. The gliding scaffold equipment is used for the first time in the long span cable-stayed bridge construction to reduce the construction time limit. In the process of construction, to make sure a safe connection among concrete objects with different ages, the single-supporting and single-suspension system is adopted before the concrete pouring. While the double-supporting and single-suspension system is applied after con- crete pouring. These construction systems with gliding scaffold equipment are first introduced in long span ca- ble-stayed bridge and presented in detail[1]. The practice shows that these gliding scaffold systems have many advan- tages over the traditional ones.
基金The Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.
文摘This paper conducts practical research on the application of steel fiber reinforced concrete construction technology in road and bridge engineering.The study emphasized in its core advantages of tensile strength,impact resistance,fatigue resistance and high toughness,and introduces its applications in scenarios such as bridge deck pavement,expansion joints and tunnel opening sections.The key points of construction techniques such as material ratio and fiber selection,mixing,pouring and vibration,as well as quality control difficulties and solutions such as steel fiber dispersion,shrinkage cracks and temperature control was analyzed.The development trends of intelligent material research and development and automated construction technology,and propose application suggestions for engineering design and construction management was discussed in this study,which can serve as a references to improve the quality of road and bridge engineering.
文摘Cable-stayed bridge is a kind of bridge under bending pressure and tension of supporting system. The main stressed component of this kind of bridge is stay cable, which plays a vital role in the whole bridge structure. Based on this, this paper takes the D1 cable-stayed bridge project of Malaysia Coastal Avenue as an example to deeply explore the construction technology of parallel steel cable stayed cables of long-span cable-stayed bridges, aiming at providing scientific construction technology support for the construction of cable-stayed bridges and ensuring the quality of bridge construction.
基金National Science and Technology Supporting Program of China ( No. 2006BAG04B03)
文摘Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.
文摘A steel-concrete composite cable-stayed bridge features integrated steel girders and concrete decks linked by shear connectors to support loads,but stress concentration in wet joints can lead to cracking.In-situ tests were conducted on key sections of steel-concrete composite cable-stayed bridges to analyze the stress-strain evolution of wet joints under environmental factors,constraints,and complex construction processes.The coordinated working performance of the bridge decks was also analyzed.The results indicate that temperature is the key factor affecting the stresses and strains in wet joint concrete.Approximately 7 days after casting the wet joint concrete,the strains at each measurement point of the wet joint are approximately negatively correlated with the temperature change at the measurement point.Different locations within the wet joints have respective impacts,presenting potential weak points.Construction conditions have a certain impact on the stress and strain of the wet joint.The top deck of the steel box girder is not fully bonded to the bottom surface of the wet joints,resulting in a certain strain difference after loading.To further analyze the cooperative working performance of steel box girders and concrete wet joint bridge deck systems,finite element analysis was conducted on composite girder structures.A stiffness calculation method for shear connectors based on numerical simulation was proposed.The results indicate that strain differences can cause interface slip in composite girders.This slip leads to increased deflection of the composite girders and increased tensile stress in the bottom plate of the steel box girders.This study clarifies the stress conditions and factors affecting wet joints during construction,preventing early cracking,and offers precise data for a full bridge finite element model.
基金financially supported by the Guangxi Key Research and Development Plan Program(AB22036007).
文摘Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.
基金Project supported by the National Natural Science Foundation of China(Nos.51578496 and 51878603)the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)。
文摘To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.
基金Supported by the National Key Project of Scientific and Technical Supporting Program(NO.2006BAG04B03)
文摘The construction period of large cable-stayed bridges is long, and the structure deformation is complicated. Any error during construction will potentially affect the cantilever alignments and the internal forces. In order to ensure safety during construction and exactly determine the cantilever alignments, dynamic deformation monitoring is needed immediately when the con struction of the superstructure starts. This paper aims at the requirement of deformation monitoring during the Sutong Bridge construction, and introduces the realization and observing schemes of the GPS and georobot based on remote real-time dynamic geometrical deformation monitoring system, then researches the data processing methods and enumerates some of the application achievements. Long-term operation during the Sutong Bridge construction indicates that the system runs steadily and the results are reliable.
文摘A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses of this conceptual deck system. The FEA results are compared to those of the traditional full-depth precast concrete deck panel system. The comparison results show that the mechanical behavior of the new deck system is different from that of the traditional deck system. The concrete decks in the new system act as two-way slabs, instead of the one-way slab in the traditional system. Meanwhile, the connections in both the longitudinal and transverse direc- tions may need to accommodate the negative moments. Compared to those in the traditional system, the longitu- dinal nominal stress at middle span increases a lot in the new deck system and the effective flange width varies significantly. In addition, the dynamic results show that the impact factor is influenced by the spacing of connections. Finally, some design concerns of the new deck system are proposed.
基金National Science and Technology Support Program of China(No.2006BAG04B04)
文摘Sutong Bridge tower which is 300.4 m is the highest one in the world.The tower anchor area uses the steel-concrete composite structure,its structure and the stress mechanism are complex,so it must be paid more attention to the structure durable issue.The 300 m height makes the tower quite sensitive to the environmental factors such as wind and temperature.The wind resistance safety of tower in construction stage is especially important.In this paper,the design of composite structure is introduced.The key technologies of tower geometry control and wind resistance in construction stage are analyzed.
文摘The Fenghua River Bridge is a major structure on the highway between Hengzhang and Guojiachi, which is to be built with a four-span prestress concrete (PC) box girder and symmetrical cantilever castings. In this paper, a finite element method (FEM) model is set up to study the effects of concrete differential aging time on the construction phases of the Fenghua River Bridge by calculating the vertical displacement of the folding segment of the middle span and the longitudinal bending moment of Pier 12#. In the model, the girders are classified into 150 changing sections based on the desgn scheme, and their construction is to be carried in 16 phases respectively to build 12 blocks connected by a side folding segment and a middle folding segment, covered with a second dead load and in completion for 20 years. It is found that the internal forces and deformations of the concrete structures at the aging time of 60 d are quite different from those of 0 d aging time while the behaviors of the structures of 120 d aging time is nearly the same as those of 60 d aging time― the differences are so small that can be neglected, suggesting that the creep develops obviously about one month after the cement is hardened and the development fades later on.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘This paper,from three aspects including construction conditions,foundation design and construction,introduces some considerations in the designing of main-pylon foundations and some practical measures to deal with certain unfavorable construction conditions,such as deep water,tidal effect,soft stratum and heavy traffic,during the construction of main-pylon foundations.
基金National Science and Technology Support Program(No.2006BAG04B05)
文摘Sutong Bridge,as a world-record cable-stayed bridge with its main span exceeding 1 000 m constructed in Yangtze River estuary region in China,is located at a site with complicated hydrologic conditions and poor geotechnical conditions and therefore,scour protection will be a decisive factor for ensuring smooth and successful construction of this bridge.This paper,starting from structural description of deep-water group pile foundation,analyzes impact to the bridge safety introduced by scour and its protection and further presents different solutions of scour protection for foundation structures of this bridge.
文摘In general,the material properties,loads,resistance of the prestressed concrete continuous rigid frame bridge in different construction stages are time-varying.So,it is essential to monitor the internal force state when the bridge is in construction.Among them,how to assess the safety is one of the challenges.As the continuous monitoring over a long-term period can increase the reliability of the assessment,so,based on a large number of monitored strain data collected from the structural health monitoring system(SHMS)during construction,a calculation method of the punctiform time-varying reliability is proposed in this paper to evaluate the stress state of this type bridge in cantilever construction stage by using the basic reliability theory.At the same time,the optimal stress distribution function in the bridge mid-span base plate is determined when the bridge is closed.This method can provide basis and direction for the internal force control of this type bridge in construction process.So,it can reduce the bridge safety and quality accidents in construction stages.
基金Sponsored by the Ministry of Science and Technology of China(Grant NoSLDRCE14-B08)
文摘There are many potential sources of risks which may cause bridge failures and result in numerous economic and human losses during the construction of bridges. Therefore,risk assessment for bridges during construction should be taken rigorously to avert bridge failures and casualties. This article presents a fuzzy logic-based method which integrates the fuzzy analytical hierarchy process( FAHP) method based on a 3-point scale,fuzzy logic,and fuzzy set theory into a single synthetic method. In this method,the FAHP method based on a 3-point scale was used to identify and rank diverse risk factors,and fuzzy logic and fuzzy set theory were used to process inaccurate datasets including non-statistical information. After the concept and procedure of the FAHP method based on a 3-point scale were demonstrated,the proposed fuzzy logic-based method was used to perform risk assessment on the Aizhai Suspension Bridge with a main span length of1 176 m in China. The results show that the proposed method can more effectively carry out risk assessment of bridges during construction.
基金National Science and Technology Support Program of China(No.2006BAG04B03)
文摘The Sutong Yangtze River Bridge(short as Sutong Bridge)is now the largest span cable-stayed bridge in the world.The construction of the superstructure of the middle bridge covered several stages including erection of the big block girders for the side span,assistant span and tower area,erection of standard girders and closure of the middle span.The big block girders were hoisted by a floating crane,and the standard girders were hoisted by a double crane system on the deck.The pushing assistant method was adopted for the middle span closure construction.Furthermore,key technologies and innovative methods used in the processes of girder erection and cable assemblage in all stages were expatiated systematically.An all-stage self-adaptive geometry control method was used in the construction process.By accurately controlling the unstressed dimensions and shape of all structural components in each step,and realization that the control system and the controlled system adapt to each other,the goal was to make control of the final line shape and inner force of the bridge structure achievable.Two solutions,including GPS based and total station based dynamic geometry monitoring systems,were used to resolve the measure problem under the wide-range of wind-induced vibrations in the long cantilever state.Finally,research on the wind-induced vibration of the superstructure during the construction period was executed.Buffeting response analysis to the longest single and double cantilever states were carried out.The analysis and evaluation of wind resistance safety of the main girders under the longest single cantilever state was made,and corresponding wind resistance measures were suggested.The as-built geometric error and cable force error were controlled in a required design range,and this whole technological achievement can be a benchmark for construction of other large span cable-stayed bridges in the future.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Bridge is a highway three-pylon two-span bridge with span arrangement of 1 080 m + 1 080 m and the length of the main cable is more than 3 100 m. It is the longest cable in China. As the erection of the main cable needs to cross over three towers and the cables undulate acutely, general problems like the twist, spread and swell of strands and shedding of the zinc coating are prone to arise, which make it difficult to guarantee the quantity of cable traction construction. In this paper, the hauling, shaping and saddling of strands and sag adjusting are illustrated in detail and how to execute the refined construction control to guarantee the erection quality is also covered.
文摘The formwork and falsework in the construction of twin ribbed slab decks on a multi-span ecological bridge for a dual carriageway are presented. The bridge is situated in a valley plain which is crossed by small rivers and was designed principally with the environment in mind. The bridge length is over 356 m, and the width of the decks is 11.5 m. For the bridge works, a simple conventional falsework system was chosen with steel frames for the supports and steel rolled beams for the decks. The formwork was constructed in solid timber and plywood as multiple-use panels. The falsework was designed in order to build the two 10-span bridge decks in stages. The decks are continuous cast-in-situ prestressed concrete twin rib with spans of 30 m, 34 m and 45 m. An individual falsework system was designed, which was easy to move transversally following completion of each stage for one deck. After finishing each stage, for the second deck, the falsework was dismantled and used again in the next construction fronts. An individual arrangement for the falsework along with timber pilings was used to cross the biggest river. The formwork timber panels were used several times in the multistage bridge construction. The adopted falsework system is very simple, but it allowed the speedy construction of the two decks where there were severe time constraints.
文摘In the process of construction of municipal roads and bridges,it is especially important for the construction of waterproof roadbed.If the leakage of waterproof foundation surface will inevitably lead to the impact of the quality of roads and bridges,not only the economic and social benefits of the enterprise be lost but also threaten the safety of pedestrians'lives and property.Therefore,this paper analyzes the influencing factors in the waterproof roadbed surface of municipal road bridge construction,and proposes corresponding solutions.