期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A study of mechanism-data hybrid-driven method for multibody system via physics-informed neural network
1
作者 Ningning Song Chuanda Wang +1 位作者 Haijun Peng Jian Zhao 《Acta Mechanica Sinica》 2025年第3期129-153,共25页
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven... Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4). 展开更多
关键词 Mechanism-data hybrid-driven method Differential-algebra equation Multibody system Physics-informed neural network
原文传递
Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider 被引量:33
2
作者 王树新 孙秀军 +2 位作者 王延辉 武建国 王晓鸣 《China Ocean Engineering》 SCIE EI 2011年第1期97-112,共16页
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b... PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials. 展开更多
关键词 hybrid-driven underwater glider autonomous underwater vehicle dynamic modeling momentum theorem
在线阅读 下载PDF
Stability Analysis of Hybrid-Driven Underwater Glider 被引量:9
3
作者 NIU Wen-dong WANG Shu-xin +2 位作者 WANG Yan-hui SONG Yang ZHU Ya-qiang 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期528-538,共11页
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have... Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider. 展开更多
关键词 hybrid-driven underwater glider stability analysis numerical simulation field trials
在线阅读 下载PDF
Modelling and Simulation of System Dynamics of Hybrid-Driven Precision Press
4
作者 李永刚 张策 +1 位作者 孟彩芳 宋轶民 《Transactions of Tianjin University》 EI CAS 2005年第3期230-234,共5页
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via... Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research. 展开更多
关键词 hybrid-driven precision press two-DOF mechanism Lagrange′s formula DYNAMICS
在线阅读 下载PDF
A New Design Method for Realizing Accurate Track of Hybrid-driven Five-bar Mechanism
5
作者 ZHU Yonggang LU Xinsheng 《International Journal of Plant Engineering and Management》 2018年第4期226-233,共8页
The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to sol... The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method. 展开更多
关键词 hybrid-driven five-bar mechanism virtual crank slider mechanism decoupling algorithm
在线阅读 下载PDF
Hybrid physics-informed and data-driven mode solver for optical fiber design
6
作者 Xiao Luo Min Zhang +3 位作者 Zhuo Wang Xiaotian Jiang Yuchen Song Danshi Wang 《Advanced Photonics Nexus》 2025年第6期149-164,共16页
An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed o... An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed operator adheres to the physics essence of fiber analysis.The training of the mode-solving operator adopts a hybrid physics-informed and data-driven approach,providing the advantages of strong physical consistency,enhanced prediction accuracy,and reduced data dependency in comparison with purely datadriven methods.Benefiting from the improvements in network input-output mapping formulation,the proposed operator offers broader applicability to different fiber types and greater flexibility for property optimization.Combined with the particle swarm optimization and refractive index optimization,the operator demonstrates its capacity for the inverse design of multi-step-index fibers(MSIFs)and graded-index fibers(GRIFs).For MSIFs,to ensure a low mode crosstalk for short-distance transmission systems,optimized refractive index profiles(RIPs)of both three-ring and four-ring structures are obtained from large structure parameter search spaces.For GRIFs,to ensure a low receiving complexity for long-haul transmission systems,optimized RIP with low root mean square mode group delay is obtained through point-wise fine-tuning.Moreover,the operator is capable of analyzing the effect of dopant diffusion in manufacturing. 展开更多
关键词 inverse design few-mode fiber mode solver neural operator structure optimization hybrid-driven deep learning.
在线阅读 下载PDF
Research and experiment of a novel flower transplanting device using hybrid-driven mechanism 被引量:4
7
作者 Xiong Zhao Xiaoshu Zhang +2 位作者 Qingpei Wu Li Dai Jianneng Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第2期92-100,共9页
Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel me... Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism. 展开更多
关键词 hybrid-driven mechanism mechanism optimization integrated operation of picking and planting synchronous linkage motion control
原文传递
Design,hydrodynamic analysis,and testing of a bioinspired controllable wing mechanism with multi-locomotion modes for hybrid-driven underwater gliders 被引量:1
8
作者 SUN TongShuai WANG YanHui +2 位作者 YANG ShaoQiong WANG Cheng ZHANG LianHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2688-2708,共21页
Hybrid-driven technology,which can improve the sailing performance of underwater gliders(UGs),has been successfully used in ocean observation.However,a hybrid-driven UG(HUG)with an added tail propeller is still unable... Hybrid-driven technology,which can improve the sailing performance of underwater gliders(UGs),has been successfully used in ocean observation.However,a hybrid-driven UG(HUG)with an added tail propeller is still unable to achieve backward and turning motion with a body length radius,and the hydrodynamic pitch moment acting on the HUG that is mainly caused by the fixed-wing makes it difficult to achieve high-precision attitude control during fixed-depth navigation.To solve this problem,a two-degree-of-freedom bioinspired controllable wing mechanism(CWM)is proposed to improve the maneuverability and cruising ability of HUGs.The CWM can realize five motion modes:modifying the dihedral angle or anhedral angle,changing the frontal area of the wing,switching the wing from horizontal to be a vertical rudder,flapping the wing as propulsion,and rotating the wing as a vector propeller.First,the design process of the CWM is provided,and hydrodynamic forces in each motion mode of three CWMs with different trailing edge sweepback angles(TESA)and attitude angles are analyzed through computational fluid dynamics simulation.The relationship between hydrodynamics and the attitude angles or TESA of the CWM is analyzed.Then,experiments are conducted to measure the hydrodynamics of the CWM when it is in a flapping wing mode and rotating the wing as a vector propeller,respectively.The hydrodynamic forces obtained from the simulation are consistent with data measured by a force sensor,proving the credibility of the simulated hydrodynamics.Subsequently,by applying the results of the hydrodynamic force in this study,the flapping trajectory of the wingtip is planned using the cubic spline interpolation method.Furthermore,two underwater demo vehicles with a pair of CWMs are developed,and experiments are conducted in a water tank,further validating and demonstrating the feasibility of the proposed CWM. 展开更多
关键词 controllable wing mechanism hybrid-driven underwater glider bioinspired design multi-locomotion modes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部