The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
An improved numerical method is used to simulate the dynamic behavior of a two part towing cable systems during turnings. In U turns and full turns, periodical heave motions are found both for the towed vehicle and fo...An improved numerical method is used to simulate the dynamic behavior of a two part towing cable systems during turnings. In U turns and full turns, periodical heave motions are found both for the towed vehicle and for the depressor. Periodic motions of the subsea units and of the cable surface tension are closely related to the turning parameters, such as turning velocity and turning radius. System parameters, such as length of the second cable and the vehicle bydrodynamics, also damp turning instability.展开更多
Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduc...Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.展开更多
A high temperature superconductor (HTS) cable system of both a length of 4 metre and a normal current of 2 KA with terminations and a cooling system has been built up and tested. The cable conductor was made of Bi-2...A high temperature superconductor (HTS) cable system of both a length of 4 metre and a normal current of 2 KA with terminations and a cooling system has been built up and tested. The cable conductor was made of Bi-2223 tape. A space maintained vacuum between two corrugated stainless steel tubes functions as the cryostat surrounding the superconductor. A series of tests were carried out to verify the functions of the system. The important data obtained can be used to make longer HTS cable systems.展开更多
Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to cr...Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.展开更多
A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying ele...A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying electricity to four industrial customers (including two metallurgical refineries) and a residential population of about 100000. In this paper, we give an update on the operation and maintenance status of the system and comments on reliability issues. We conclude that the superconducting cable system is currently quite robust and feasible for particular utility applications, and it will be improved by advancement in cryogenic equipment and system technology.展开更多
The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, comb...The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems.展开更多
The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV s...The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.展开更多
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃...To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.展开更多
Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and ...The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.展开更多
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control...The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications.展开更多
In the realm of slope monitoring and reinforcement,traditional prestressing anchor cables are extensively used.However,these conventional methods often face limitations when applied to loess slopes,such as potential i...In the realm of slope monitoring and reinforcement,traditional prestressing anchor cables are extensively used.However,these conventional methods often face limitations when applied to loess slopes,such as potential issues with stress concentration and insufficient adaptability to the unique mechanical properties of loess,which may lead to challenges in ensuring long-term stability and effective reinforcement.Negative Poisson's ratio(NPR)anchor cables with constant resistance have emerged as a promising alternative,which can better match the engineering demands of loess slopes by providing more uniform stress distribution and adaptive deformation characteristics.The NPR cable's ability to maintain a constant resistance during deformation offers a distinct advantage over traditional methods as it can more effectively accommodate the complex and variable conditions of loess slopes.To investigate the anchoring performance of NPR cables in loess slope,the stress characteristics of NPR cable in loess medium were simulated and analysed by ABAQUS finite element software.First,static and general quasi-static analysis methods were used to simulate the NPR cable under static tensile conditions.The consistency of the simulated constant resistance deformation characteristics with experimental results found in the literature was verified.Second,the interaction model between the NPR cable coupled with the loess medium was established.Its constant resistance was calculated to be about 24.08%larger than that of NPR anchor cable while its plastic deformation was reduced by about 37.14%.The compressive stress on the contact surface between NPR cable and loess was concentrated near the free end of the sleeve,which indicated that the loess was prone to severe damage at the free end.The research results reveal the typical shear failure mechanism of NPR cable in loess medium,which provides an important theoretical basis for prevention of landslides and monitoring of loess slopes.展开更多
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar...Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance.展开更多
The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study...The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.展开更多
Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cy...Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.展开更多
As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the glo...As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.展开更多
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
文摘An improved numerical method is used to simulate the dynamic behavior of a two part towing cable systems during turnings. In U turns and full turns, periodical heave motions are found both for the towed vehicle and for the depressor. Periodic motions of the subsea units and of the cable surface tension are closely related to the turning parameters, such as turning velocity and turning radius. System parameters, such as length of the second cable and the vehicle bydrodynamics, also damp turning instability.
基金This work was financially supported by National Hi-Tech R&D Program of China (863 Program)( Grant No2006AA04Z127)New Century Excellent Talents (NCET) of Tianjin University,2005
文摘Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.
文摘A high temperature superconductor (HTS) cable system of both a length of 4 metre and a normal current of 2 KA with terminations and a cooling system has been built up and tested. The cable conductor was made of Bi-2223 tape. A space maintained vacuum between two corrugated stainless steel tubes functions as the cryostat surrounding the superconductor. A series of tests were carried out to verify the functions of the system. The important data obtained can be used to make longer HTS cable systems.
文摘Based on the analysis of a specific relay model and an HVAC (high voltage alternating current) cable system, a detailed approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows to create complex and accurate relay models derived from the original algorithms. Relay models can be applied with various systems, allowing to obtain the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP-simulated and real world generated current signals connected to the relay.
基金This work was supported in part by the Chinese Ministry of Science and Technology under Grant No. 2002AA306154, 2004AA306110,2005AA306120 and 2006AA03Z207the Beijing Municipal Scienceand Technology Commission under Grant No. H020420010210the Yunnan Provincial Science and Technology Department under Grant No.2003BABCA05A041 and 2003530101000415.
文摘A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying electricity to four industrial customers (including two metallurgical refineries) and a residential population of about 100000. In this paper, we give an update on the operation and maintenance status of the system and comments on reliability issues. We conclude that the superconducting cable system is currently quite robust and feasible for particular utility applications, and it will be improved by advancement in cryogenic equipment and system technology.
文摘The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems.
基金financially supported in part by the General Program of the National Natural Science Foundation of China (Grant No.12272221)the State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University)(Grant No. GKZD010087)。
文摘The integrated systems of unmanned surface vehicles(USVs) and remotely operated vehicles(ROVs) have been extensively applied in marine exploration and seabed coverage. However, the simultaneous navigation of USV-ROV systems is frequently limited by strong disturbances induced by waves or currents. This paper develops a novel rigidflexible coupling multibody dynamic model that incorporates disturbances of variable-length marine cables with geometrically nonlinear motion. A hybrid Lagrangian-Eulerian absolute nodal coordinate formulation(ANCF) element is developed to accurately model subsea cables which undergo significant overall motion, substantial deformation,and mass flow during the deployment of underwater equipment. Furthermore, the governing equations of the coupled USV-umbilical-ROV system are derived, considering wave-induced forces and current disturbances. A numerical solver based on the Newmark-beta method is proposed, along with an adaptive meshing technique near the release point. After validating three experimental cases, the cable disturbances at both the USV and ROV ends—caused by ocean currents, heave motion, and simultaneous navigation—are comprehensively compared and evaluated. Finally,it is demonstrated that a PD controller with disturbance compensation can enhance the simultaneous navigation performance of USV-ROV systems.
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
基金The National Natural Science Foundation of China(No.52338011).
文摘To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.
基金financial support from the National Natural Science Foundation of China(Grant No.41941018).
文摘The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications.
基金the State Key Laboratory of Deep Geotechnical Mechanics and Underground Engineering(SKLGDUEK2124)of China University of Mining and Technology(Beijing)for its support for this research。
文摘In the realm of slope monitoring and reinforcement,traditional prestressing anchor cables are extensively used.However,these conventional methods often face limitations when applied to loess slopes,such as potential issues with stress concentration and insufficient adaptability to the unique mechanical properties of loess,which may lead to challenges in ensuring long-term stability and effective reinforcement.Negative Poisson's ratio(NPR)anchor cables with constant resistance have emerged as a promising alternative,which can better match the engineering demands of loess slopes by providing more uniform stress distribution and adaptive deformation characteristics.The NPR cable's ability to maintain a constant resistance during deformation offers a distinct advantage over traditional methods as it can more effectively accommodate the complex and variable conditions of loess slopes.To investigate the anchoring performance of NPR cables in loess slope,the stress characteristics of NPR cable in loess medium were simulated and analysed by ABAQUS finite element software.First,static and general quasi-static analysis methods were used to simulate the NPR cable under static tensile conditions.The consistency of the simulated constant resistance deformation characteristics with experimental results found in the literature was verified.Second,the interaction model between the NPR cable coupled with the loess medium was established.Its constant resistance was calculated to be about 24.08%larger than that of NPR anchor cable while its plastic deformation was reduced by about 37.14%.The compressive stress on the contact surface between NPR cable and loess was concentrated near the free end of the sleeve,which indicated that the loess was prone to severe damage at the free end.The research results reveal the typical shear failure mechanism of NPR cable in loess medium,which provides an important theoretical basis for prevention of landslides and monitoring of loess slopes.
基金supported by the Innovation Foundation of National Commercial Aircraft Manufacturing Engineering Technology Research Center(No.COMAC-SFGS-2022-1877)in part by the National Natural Science Foundation of China(No.92048301)。
文摘Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance.
基金Financial supports for this work,provided by the National Natural Science Foundation Project of China(No.52374152)the Guangxi Science and Technology Plan Project of China(No.2022AB31023)the National Basic Research Development Program of China(No.2022YFC2904602)are gratefully acknowledged。
文摘The anchoring capacity of the anchor cable is closely related to the bonding length and radial pressure conditions.Through field pull-out tests,theoretical analysis,numerical simulation,and industrial tests,this study clarifies the relationship between radial pressure and bonding length for the ultimate pullout force and reveals the microscopic failure process of the resin-rock interface in the anchoring system.The results show that the ultimate load increases with the increase of bonding length in three different stages:rapid,slow,and uniform growth.The new mechanical model developed considering radial pressure describes the inverse relationship between radial pressure and the plastic zone on the bonding section,and quantifies the reinforcing effect of confining pressure on the anchoring force.During the pull-out process of the anchor cable,the generation of failure cracks is in the order of orifice,bottom,and middle of the hole.Radial pressure can effectively enhance the ultimate pull-out force,alleviate the oscillation increase of pull-out force,and inhibit resin cracking,but will produce an external crushing zone.It also reveals the synergistic effect between bonding length and radial pressure,and successfully carries out industrial tests of anchor cable support,which ensures the stability of the stope roof and provides an important reference for the design of anchor cable support in deep high-stress mines.
基金financially supported by the National Natural Science Foundation of China(Grant No.52471301)the Fujian Province Transportation Science and Technology Project(Grant No.JC202302)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24E090003).
文摘Buckling failure in submarine cables presents a prevalent challenge in ocean engineering.This work aims to explore the buckling behavior of umbilical cables with damaged sheaths subjected to compression and bending cyclic loads.A finite element model is devised,incorporating a singular armor wire,a rigid core,and a damaged sheath.To scrutinize the buckling progression and corresponding deformation,axial compression and bending cyclic loads are introduced.The observations reveal that a reduction in axial compression results in a larger number of cycles before buckling ensues and progressively shifts the buckling position toward the extrados and fixed end.Decreasing the bending radius precipitates a reduction in the buckling cycle number and minimizes the deformation in the armor wire.Furthermore,an empirical model is presented to predict the occurrence of birdcage buckling,providing a means to anticipate buckling events and to estimate the requisite number of cycles leading to buckling.
基金National Natural Science Foundation of China,No.42371175。
文摘As the most important large-scale communication infrastructure in the world today,submarine cable can profoundly reflect the global Internet communication pattern,and is of great significance for understanding the global digital divide.We used multi-scale and network analysis methods to depict the distribution pattern,network structure and spatio-temporal evolution of global submarine cables at the national and landing point scales,in order to analyze the current situation,challenges and main directions of global digital divide governance.Results show that:(1)spatial distribution of global submarine cables is unbalanced,the United States and Europe are the concentrated distribution areas of submarine cables and global information flow centers;(2)core connections of the global submarine cable network are only composed of a tiny minority of countries or regions or landing points,and have strong geographical proximity and clustered-type characteristic,noting that multitudinous landing points of developed countries are at the semi-periphery or even periphery of the network;(3)submarine cables can alleviate the global digital divide through the three paths of infrastructure universalization,digital ecosystem reconstruction and economic empowerment,and the global digital divide governance still faces the dilemma of the differences in digital strategy development and the lack of a governance system.However,due to the increasingly important position of cities in developing countries in the international communication pattern,the global digital divide problem is being alleviated.