A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic co...A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.展开更多
The structure and characteristics of a large multi-parameter environmental simulation cabin are introduced.Due to the diffculties of control methods and the easily damaged characteristics,control systems for the large...The structure and characteristics of a large multi-parameter environmental simulation cabin are introduced.Due to the diffculties of control methods and the easily damaged characteristics,control systems for the large multi-parameter environmental simulation cabin are diffcult to be controlled quickly and accurately with a classical PID algorithm.Considering the dynamic state characteristics of the environmental simulation test chamber,a lumped parameter model of the control system is established to accurately control the multiple parameters of the environmental chamber and a fuzzy control algorithm combined with expert-PID decision is introduced into the temperature,pressure,and rotation speed control systems.Both simulations and experimental results have shown that compared with classical PID control,this fuzzy-expert control method can decrease overshoot as well as enhance the capacity of anti-dynamic disturbance with robustness.It can also resolve the contradiction between rapidity and small overshoot,and is suitable for application in a large multi-parameter environmental simulation cabin control system.展开更多
Abstract Air distribution in commercial airliner cabins is very important for the comfort and health of passengers and crew. Experimental measurements, computational fluid dynamics (CFD) simulations, and inverse mod...Abstract Air distribution in commercial airliner cabins is very important for the comfort and health of passengers and crew. Experimental measurements, computational fluid dynamics (CFD) simulations, and inverse modeling are state-of-the-art methods available for studying the air distri- bution. This paper gave an overview of the different experimental models, such as scale models, simplified models, full-scale mockups, and actual air cabins. Although experimental measurements were expensive and time consuming, the data were essential for validating CFD simulations. Different modeling strategies for CFD simulations were also discussed in this paper, including large eddy simulations and Reynolds averaged Navier-Stokes equation modeling. CFD simulations were main stream approaches for studying the air distribution but they could not easily lead to optimal design. Inverse modeling of air distribution has recently emerged into a very powerful and attractive tool for designing the air distribution in airliner cabins, although most of the studies were preliminary.展开更多
Thermoregulatory mathematical models have being developed for more than half a century and obtained more and more wide application. Among them, the 'engineering-physiological' thermal models, which correlated ...Thermoregulatory mathematical models have being developed for more than half a century and obtained more and more wide application. Among them, the 'engineering-physiological' thermal models, which correlated closely to the man-machine-environment system, are the ones that developed most rapidly and have been widely accepted by thermal physiologists and environmental control engineers.This paper attempts to outline briefly the development and application of such kind of thermal models, discusses how to further develop and apply various combined thermal models in practice, and puts forward four respects of suggestions for establishment and modification of combined thermal models of man-clothing-cabin environment.展开更多
Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers...Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phe- nomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to con- trol ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET* of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80-90% of the thermal acceptability levels of passen- gers.展开更多
基金supported by the Aeronautical Science Foun-dation of China(No.2012XX51043)‘‘Fanzhou’’Youth Scientific Funds of China(No.20100504)
文摘A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.
基金supported by the Aeronautical Science Foundation of China(No.2012ZD51043)‘‘Fanzhou’’ Youth Scientifc Funds(No.20100504)
文摘The structure and characteristics of a large multi-parameter environmental simulation cabin are introduced.Due to the diffculties of control methods and the easily damaged characteristics,control systems for the large multi-parameter environmental simulation cabin are diffcult to be controlled quickly and accurately with a classical PID algorithm.Considering the dynamic state characteristics of the environmental simulation test chamber,a lumped parameter model of the control system is established to accurately control the multiple parameters of the environmental chamber and a fuzzy control algorithm combined with expert-PID decision is introduced into the temperature,pressure,and rotation speed control systems.Both simulations and experimental results have shown that compared with classical PID control,this fuzzy-expert control method can decrease overshoot as well as enhance the capacity of anti-dynamic disturbance with robustness.It can also resolve the contradiction between rapidity and small overshoot,and is suitable for application in a large multi-parameter environmental simulation cabin control system.
基金supported by the National Basic Research Program of China(973 Program)(2012CB720100)
文摘Abstract Air distribution in commercial airliner cabins is very important for the comfort and health of passengers and crew. Experimental measurements, computational fluid dynamics (CFD) simulations, and inverse modeling are state-of-the-art methods available for studying the air distri- bution. This paper gave an overview of the different experimental models, such as scale models, simplified models, full-scale mockups, and actual air cabins. Although experimental measurements were expensive and time consuming, the data were essential for validating CFD simulations. Different modeling strategies for CFD simulations were also discussed in this paper, including large eddy simulations and Reynolds averaged Navier-Stokes equation modeling. CFD simulations were main stream approaches for studying the air distribution but they could not easily lead to optimal design. Inverse modeling of air distribution has recently emerged into a very powerful and attractive tool for designing the air distribution in airliner cabins, although most of the studies were preliminary.
文摘Thermoregulatory mathematical models have being developed for more than half a century and obtained more and more wide application. Among them, the 'engineering-physiological' thermal models, which correlated closely to the man-machine-environment system, are the ones that developed most rapidly and have been widely accepted by thermal physiologists and environmental control engineers.This paper attempts to outline briefly the development and application of such kind of thermal models, discusses how to further develop and apply various combined thermal models in practice, and puts forward four respects of suggestions for establishment and modification of combined thermal models of man-clothing-cabin environment.
基金supported by the Civil Aircraft Pre-research Project of China
文摘Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phe- nomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to con- trol ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET* of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80-90% of the thermal acceptability levels of passen- gers.