由于 AZ 系变形镁合金属于密排六方结构,其塑性变形性能和机械性能相对较差。采用晶粒细化的方法可大大改善镁合金的力学性能。本文通过对自制的新型晶粒细化剂(Al-Ti-C-RE)与常规的细化剂(MgCO_3)的细化作用的比较发现,新开发的晶粒细...由于 AZ 系变形镁合金属于密排六方结构,其塑性变形性能和机械性能相对较差。采用晶粒细化的方法可大大改善镁合金的力学性能。本文通过对自制的新型晶粒细化剂(Al-Ti-C-RE)与常规的细化剂(MgCO_3)的细化作用的比较发现,新开发的晶粒细化剂 Al-Ti-C-RE 可以更有效地细化镁合金的晶粒,提高 AZ系镁合金的综合力学性能。展开更多
Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A35...Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.展开更多
The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffracti...The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model.展开更多
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high M...Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it’s range from 3% up to 4%. But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.展开更多
Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SE...Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃, ε → γ transition completed in 10s meanwhile the relative shape recovery ratio of the alloy increased rapidly.展开更多
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-REshape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results ofstudy indicate that the alloys with high Mn ...Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-REshape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results ofstudy indicate that the alloys with high Mn content (25%) appeare better SME, especially in lowerstrain. SME improves evidently when Si is higher content, especially it's range from 3% up to 4%.But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloyis weakening gradually as carbon content increases under small strain (3%). But in the condition oflarge strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% showssmall decreasing range, especially of alloy with the addition of compound RE.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51174177)
文摘Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.
基金Project supported by National High Technology Research and Development Program of China(2013AA031001)the National Basic Research Program of China(2012CB619503)International Science&Technology Cooperation Program of China(2012DFA50630)
文摘The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model.
文摘Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it’s range from 3% up to 4%. But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.
文摘Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃, ε → γ transition completed in 10s meanwhile the relative shape recovery ratio of the alloy increased rapidly.
文摘Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-REshape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results ofstudy indicate that the alloys with high Mn content (25%) appeare better SME, especially in lowerstrain. SME improves evidently when Si is higher content, especially it's range from 3% up to 4%.But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloyis weakening gradually as carbon content increases under small strain (3%). But in the condition oflarge strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% showssmall decreasing range, especially of alloy with the addition of compound RE.