BACKGROUND Gastric cancer(GC)is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency,but its exact pathogenesis has not been fully elucidated.ETS ho...BACKGROUND Gastric cancer(GC)is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency,but its exact pathogenesis has not been fully elucidated.ETS homologous factor(EHF)is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors.To date,whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR.Western blotting was performed to determine the protein expression of EHF,c-Met,and its downstream signal molecules.The EHF expression in GC tissues was further detected by immunohistochemical staining.To investigate the role of EHF in GC oncogenesis,small interfering RNA(siRNA)against EHF was transfected into GC cells.The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays.Flow cytometry was performed following Annexin V/propidium iodide(PI)to identify apoptotic cells and PI staining to analyze the cell cycle.Cell migration and invasion were assessed by transwell assays.RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed.Silencing of EHF by siRNA reduced the proliferation of GC cells.Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells.Cell migration and invasion were significantly inhibited.EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2(Erk1/2)pathway.Additionally,phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated.Moreover,inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition,leading to inhibition of the epithelial-to-mesenchymal transition(EMT).CONCLUSION These results suggest that EHF plays a key role in cell proliferation,invasion,apoptosis,the cell cycle and EMT via the c-Met pathway.Therefore,EHF may serve as an antineoplastic target for the diagnosis and treatment of GC.展开更多
Background: Accumulating evidence demonstrates that microRNAs(miRNAs) play essential roles in tumorigenesis and cancer progression of hepatocellular carcinoma(HCC). Average targets of a miRNA were more than 100. And o...Background: Accumulating evidence demonstrates that microRNAs(miRNAs) play essential roles in tumorigenesis and cancer progression of hepatocellular carcinoma(HCC). Average targets of a miRNA were more than 100. And one miRNA may act in tumor via regulating several targets. The present study aimed to explore more potential targets of miR-449a by proteomics technology and further uncover the role of miR-449a in HCC tumorigenesis.Methods: Technologies such as i TRAQ-based quantitative proteomic were used to investigate the effect of miR-449a on HCC. The expression of c-Met and miR-449a was detected by q RT-PCR in HCC samples.Gain-and loss-of-function experiments were performed to identify the function and potential target of miR-449a in HCC cells.Results: In HCC, miR-449a was significantly downregulated, while c-Met was upregulated concurrently.Quantitative proteomics and luciferase reporter assay identified c-Met as a direct target of miR-449a.Moreover, miR-449a inhibited HCC growth not only by targeting CDK6 but also by suppressing cMet/Ras/Raf/ERK signaling pathway. Furthermore, the inhibition of c-Met expression with a specific siRNA significantly inhibited cells growth and deregulated the ERK pathway in HCC.Conclusion: The tumor suppressor miR-449a suppresses HCC tumorigenesis by repressing the c-Met/ERK pathway.展开更多
Several recent scientific interventions have been conducted to investigate the effects of intermittent fasting (IF) on tumor metastasis. It is well known that IF has a positive effect on reducing OS in the human body....Several recent scientific interventions have been conducted to investigate the effects of intermittent fasting (IF) on tumor metastasis. It is well known that IF has a positive effect on reducing OS in the human body. OS is an important factor that leads to DNA damage and stimulates carcinogenesis through dysregulation of signaling pathways that are important for tumor survival and metastasis. Studies have demonstrated that mitogen-activated protein kinase (Ras/MAPK), phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), Wnt Beta Catenin (Wnt/β-catenin), and hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) are activated in response to the overproduction of OS and may result in carcinogenesis and tumor metastasis. In this review, we discuss the regulatory mechanism of IF in tumor metastasis by downregulating key OS pathways such as Ras/Raf/MAPK, PI3K/AKT/mTOR, Wnt/β-catenin, and HGF/c-Met.展开更多
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl...Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.展开更多
V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating ene...V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.展开更多
Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event ...Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event for the English edition of the book’s fifth volume on 3 December 2025 in Johannesburg,South Africa.展开更多
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate...Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.展开更多
Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and tr...Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.展开更多
This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliv...This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliva has emerged as a noninvasive diagnostic medium capable of reflecting both local tumor activity and systemic physiological changes.Various salivary biomarkers,including microRNAs,cytokines,proteins,metabolites,and exosomes,have been linked to oncogenic signaling pathways involved in tumor progression,immune modulation,and therapeutic resistance.Advances in quantitative polymerase chain reaction,mass spectrometry,and next-generation sequencing have enabled comprehensive biomarker profiling,while point-of-care detection systems and saliva-based omics platforms are accelerating clinical translation.Remaining challenges include variability in salivary composition,lack of standardized collection protocols,and insufficient validation across large patient cohorts.This review highlights the mechanistic relevance,diagnostic potential,and translational challenges of salivary biomarkers in OSCC.展开更多
Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to i...Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.展开更多
Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,...Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,and the rats received oral CSⅣor atorvastatin.The body weight,organ weights,food intake,calorie intake,lipid parameters,3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)/mevalonate ratio,collagen,free fatty acid,cardiac parameters,apolipoprotein(A and B),antioxidant parameters,inflammatory cytokines,and inflammatory parameters were assessed.The mRNA expressions of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),IL-6,IL-17,PI3K,AKT,and mTOR were estimated.Results:CSⅣsignificantly modulated food intake,body weight,organ weight(liver,kidney,and heart),and calories(P<0.05).Total cholesterol,triglycerides,very low-density lipoprotein cholesterol,low-density lipoprotein cholesterol,cardiovascular risk index-1,and cardiovascular risk index-2 were decreased,while high-density lipoprotein cholesterol and anti-atherogenic index were increased significantly in the CSⅣgroup(P<0.05).Besides,CSⅣsignificantly restored the level of HMG-CoA/mevalonate ratio,collagen,free fatty acid,cardiac parameters(creatinine kinase-MB,lactate dehydrogenase,cTnT,cTnI),apolipoprotein(apolipoprotein A and apolipoprotein B),antioxidant parameters(MDA,CAT,GPx,GSH,SOD),inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-10),inflammatory parameters(COX-2,TGF-β,NF-κB),intercellular adhesion molecule-1,vascular cell adhesion molecule-1,and monocyte chemoattractant protein-1.CSⅣalso decreased the mRNA expression of IL-1β,TNF-α,IL-6,IL-17,PI3K,AKT,and mTOR.Conclusions:This study showed the anti-atherosclerosis effect of CSⅣagainst high-fat diet-induced atherosclerosis in rats via alteration of NF-κB/COX-2 and PI3K/AKT/mTOR signaling pathway.展开更多
Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling res...Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling results in mucosal impairment and the initiation of cancer.Banxia Xiexin Decoction(BXD),a well-known formula in traditional Chinese medicine(TCM),shows promise in treating gastric disorders,but its mechanisms in gastric restoration remain unclear.Methods:Using MNNG-induced CAG and PLGC rat models,BXD was administered for 12 weeks.Gastric mucosal pathology was assessed via hematoxylin-eosin staining.Proliferation(Ki-67)and angiogenesis(VEGFA)markers were evaluated by immunohistochemistry.Network pharmacology identified BXD’s targets and pathways.Notch pathway components(Notch1,Jagged1,Dll4,Hes1)were analyzed via qPCR,Western blot,and immunohistochemistry.Results:BXD significantly ameliorated mucosal atrophy,glandular structural disorder,and dysplasia in CAG and PLGC rats.Network pharmacology revealed 323 overlapping targets between BXD and PLGC,with Notch signaling as a central pathway.BXD downregulated Notch1,Jagged1,Dll4,and Hes1 expression at transcriptional and protein levels,suppressed Ki-67(proliferation)and VEGFA(angiogenesis)overexpression,and restored gastric mucosal integrity.Conclusion:BXD inhibits Notch signaling,reduces aberrant proliferation and angiogenesis,and interrupts Correa’s gastric carcinogenesis cascade.This study provides mechanistic evidence supporting BXD as a TCM-based intervention for gastric precancerous lesions.展开更多
Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in m...Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.展开更多
Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,wi...Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.展开更多
Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration vi...Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.展开更多
CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells(VECs) and up-...CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells(VECs) and up-regulated during angiogenesis. In this study, we investigated whether CD151 regulated migration, proliferation, tube formation and angiogenesis of human umbilical VECs(HUVECs) with activation of C-Met. Moreover, we studied whether CD151 could affect the angiogenic molecules such as nitric oxide(NO), vascular cell adhesion molecule-1(VCAM-1) and vascular endothelial growth factor(VEGF). The expression of CD151 was determined by Western blotting. The cell proliferation assay was performed using the cell counting kit-8(CCK-8) method and cell migration was assessed in microchemotaxis chambers by using fetal bovine serum(FBS) as the chemotactic stimulus. The angiogenic molecules were evaluated using ELISA. The NO level was detected using NO detection kit. The potential involvement of various signaling pathways was explored using relevant antibodies. We found that proliferation, migration and tube formation of HUVECs were promoted by CD151 with activation of C-Met, FAK and CDC42, while they were suppressed with CD151 knockdown by RNAi. Similarly, the levels of NO, VCAM-1 and VEGF in HUVECs were increased by CD151, but they were inhibited with CD151 knockdown by RNAi. These data suggested that CD151 could promote migration, proliferation, tube formation and angiogenesis of HUVECs, which was possibly related to the C-Met signaling pathways.展开更多
Objective This study aimed to study the role of the HGF/c-Met signaling pathway in crizotinib-induced apoptosis of various lung adenocarcinoma cell lines and xenograft tumor models.Methods In vitro, H2228, H1993, and ...Objective This study aimed to study the role of the HGF/c-Met signaling pathway in crizotinib-induced apoptosis of various lung adenocarcinoma cell lines and xenograft tumor models.Methods In vitro, H2228, H1993, and A549 cells were treated with crizotinib. The inhibition of proliferation was quantitated by a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay. Apoptosis was quantified by flow cytometry. Expression of key proteins of the HGF/c-Met signaling pathway was examined by western blotting. In vivo, H1993 and A549 tumor cell xenograft models were established. Immunohistochemical analysis was used to determine protein expression of HGF and c-MET and the amount of phospho-c-MET(p-c-Met). Real-time quantitative polymerase chain reaction(PCR) was applied to examine the messenger RNA(m RNA) expression of c-MET and serine/threonine protein kinase(AKT). The expression and activation of the key proteins were evaluated by western blotting.Results In vitro, the growth of H1993, H2228, and A549 cells was inhibited after crizotinib treatment for 72 h. Apoptotic rates of H1993 and H2228 cells increased with the crizotinib concentration and exposure time. In vivo, the growth-inhibitory rate of crizotinib for H1993 xenografts was 72.3%. Positive expression rates of HGF and c-MET in H1993 xenografts were higher than those in A549 xenografts; the p-c-MET amount was the largest in H1993 xenograft control but the lowest in the H1993 xenograft with crizotinib treatment. The m RNA expression levels of c-MET and AKT in H1993 xenografts were higher than those of A549 xenografts. The protein levels of c-MET, AKT, and extracellular regulated protein kinases(ERK) in H1993 xenografts were higher than those in A549 xenografts; the p-AKT amount was higher in H1993 xenograft control than in A549 xenografts; the largest amount of p-c-MET was detected in H1993 xenograft control; the amount of p-ERK was the lowest in the H1993 xenograft with crizotinib treatment.Conclusion The HGF/c-Met signaling pathway may mediate crizotinib-induced apoptosis and inhibition of proliferation of lung adenocarcinoma cells.展开更多
OBJECTIVE Metastasis-associated in colon cancer-1(MACC1)is an oncogene that has been newly identified.It promotes tumor proliferation and invasion via the MET pathway.Our study investigated the effects of Saikosaponin...OBJECTIVE Metastasis-associated in colon cancer-1(MACC1)is an oncogene that has been newly identified.It promotes tumor proliferation and invasion via the MET pathway.Our study investigated the effects of Saikosaponin-b(SS-b)on the proliferation and apoptosis of HepG2 cells and its regulation on MACC1/c-Met/Akt signaling pathway.METHODS HepG2 cells were treated with SS-b(10-800 g·L^(-1))for 48 h in vitro.The CCK-8 assay was used to assess cell proliferation,and cell apoptosis was determined by Hoechst33258 staining,AnnexinⅤ/PI staining and caspase 3 assay.RT-PCR was used to examine the expression of MACC1,c-MET and hepatocyte growth factor(HGF)mR NA.MACC1 protein was detected by Western blot and immunohistochemistry.The protein expressions of p-cMET,c-MET,p-AKT,AKT,p-BAD,BAD were measured by Western blot.RESULTS SS-b inhibited the growth of HepG2 cells in dose-dependent way and induced cell apoptosis significantly.HepG2 cells showed karyopyknosis,fragmentation and fluorescence highlight in SS-b treatment group.FCM results showed that apoptosis rate of HepG2 cells increased with SS-b concentration.The immunofluorescence results showed that the MACC1 expression decreased significantly in HepG2 cells treated with SS-b.The expression levels of MACC1,c-MET and HGF mR NA in HepG2 cells were significantly inhibited by SS-b.SS-b also significantly decreased the protein expressions of MACC1,p-c-MET and p-AKT while increased the expression of p-BAD and caspase 3 in HepG2 cells(P<0.05).CONCLUSION SS-b inhibited the proliferation and induced the apoptosis of HepG2 cells by targeting the MACC1/c-Met/Akt signaling pathway.展开更多
基金Supported by The Traditional Chinese Medicine Science and Technology Plan of Zhejiang Province,No.2017ZZ010Zhejiang Medical Science and Technology Program,No.2018266817.
文摘BACKGROUND Gastric cancer(GC)is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency,but its exact pathogenesis has not been fully elucidated.ETS homologous factor(EHF)is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors.To date,whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR.Western blotting was performed to determine the protein expression of EHF,c-Met,and its downstream signal molecules.The EHF expression in GC tissues was further detected by immunohistochemical staining.To investigate the role of EHF in GC oncogenesis,small interfering RNA(siRNA)against EHF was transfected into GC cells.The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays.Flow cytometry was performed following Annexin V/propidium iodide(PI)to identify apoptotic cells and PI staining to analyze the cell cycle.Cell migration and invasion were assessed by transwell assays.RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed.Silencing of EHF by siRNA reduced the proliferation of GC cells.Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells.Cell migration and invasion were significantly inhibited.EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2(Erk1/2)pathway.Additionally,phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated.Moreover,inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition,leading to inhibition of the epithelial-to-mesenchymal transition(EMT).CONCLUSION These results suggest that EHF plays a key role in cell proliferation,invasion,apoptosis,the cell cycle and EMT via the c-Met pathway.Therefore,EHF may serve as an antineoplastic target for the diagnosis and treatment of GC.
基金supported by grants from Shenzhen Municipal Science and Technology Foundation(JCYJ20160425103340738)the Natural Science Foundation of Zhejiang Province(LY15H160021)
文摘Background: Accumulating evidence demonstrates that microRNAs(miRNAs) play essential roles in tumorigenesis and cancer progression of hepatocellular carcinoma(HCC). Average targets of a miRNA were more than 100. And one miRNA may act in tumor via regulating several targets. The present study aimed to explore more potential targets of miR-449a by proteomics technology and further uncover the role of miR-449a in HCC tumorigenesis.Methods: Technologies such as i TRAQ-based quantitative proteomic were used to investigate the effect of miR-449a on HCC. The expression of c-Met and miR-449a was detected by q RT-PCR in HCC samples.Gain-and loss-of-function experiments were performed to identify the function and potential target of miR-449a in HCC cells.Results: In HCC, miR-449a was significantly downregulated, while c-Met was upregulated concurrently.Quantitative proteomics and luciferase reporter assay identified c-Met as a direct target of miR-449a.Moreover, miR-449a inhibited HCC growth not only by targeting CDK6 but also by suppressing cMet/Ras/Raf/ERK signaling pathway. Furthermore, the inhibition of c-Met expression with a specific siRNA significantly inhibited cells growth and deregulated the ERK pathway in HCC.Conclusion: The tumor suppressor miR-449a suppresses HCC tumorigenesis by repressing the c-Met/ERK pathway.
文摘Several recent scientific interventions have been conducted to investigate the effects of intermittent fasting (IF) on tumor metastasis. It is well known that IF has a positive effect on reducing OS in the human body. OS is an important factor that leads to DNA damage and stimulates carcinogenesis through dysregulation of signaling pathways that are important for tumor survival and metastasis. Studies have demonstrated that mitogen-activated protein kinase (Ras/MAPK), phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), Wnt Beta Catenin (Wnt/β-catenin), and hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) are activated in response to the overproduction of OS and may result in carcinogenesis and tumor metastasis. In this review, we discuss the regulatory mechanism of IF in tumor metastasis by downregulating key OS pathways such as Ras/Raf/MAPK, PI3K/AKT/mTOR, Wnt/β-catenin, and HGF/c-Met.
基金supported by the Natural Science Foundation of Yunnan Province,No.202401AS070086(to ZW)the National Key Research and Development Program of China,No.2018YFA0801403(to ZW)+1 种基金Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(to ZW)the Natural Science Foundation of China,No.31960120(to ZW)。
文摘Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.
基金support from various sources,including the National Natural Science Foundation of China(Grant Nos.81570774,82070872,92049118,and 82370854)the Junior Thousand Talents Program of China,and the Nanjing Medical University Startup Fund(All awarded to J.L.)support provided by Jiangsu Province's Innovation Personal as well as Innovative and Entrepreneurial Team of Jiangsu Province(Grant No.JSSCTD2021)(All awarded to J.L.).
文摘V-raf-leukemia viral oncogene 1(RAF1),a serine/threonine protein kinase,is well established to play a crucial role in tumorigenesis and cell development.However,the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown.In this study,we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet-induced obesity(DIO)mice.Under normal chow diet feeding,overexpression of Raf1 in AgRP neurons led to obesity in mice characterized by increased body weight,fat mass,and impaired glucose tolerance.Conversely,Raf1 knockout in AgRP neurons protected against diet-induced obesity,reducing fat mass and improving glucose tolerance.Mechanistically,Raf1 activated the MAPK signaling pathway,culminating in the phosphorylation of cAMP response element-binding protein(CREB),which enhanced transcription of Agrp and Npy.Insulin stimulation further potentiated the RAF1-MEK1/2-ERK1/2-CREB axis,highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance.Collectively,these findings underscore the important role of RAF1 in AgRP neurons in maintaining energy homeostasis and obesity pathogenesis,positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.
文摘Governance debates gained strong momentum in Africa in early December 2025 as the China-Kenya Readers Forum on Xi Jinping:The Governance of China convened in Nairobi on 1 December 2025,followed by a promotional event for the English edition of the book’s fifth volume on 3 December 2025 in Johannesburg,South Africa.
基金supported by the Natural Science Foundation of China(No.52101279)the Key Scientific Research Foundation of Education department of Hunan Province(No.24A0003)the Scientific Research Project of Education Department of Hunan Province(No.21B000)and the Fundamental Research Funds for the Central Universities of Central South University.
文摘Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts.
文摘Objective:To investigate effect of oleanolic acid(OA)on atherosclerosis and its related mechanisms.Methods:Human umbilical vein endothelial cells(HUVECs)were injured by oxidized low-density lipoprotein for 24 h and treated with OA,and the levels of cell proliferation,migration,adhesion,and apoptosis were evaluated by BrdU staining,scratch healing assay,monocyte-endothelial cell adhesion assay and flow cytometry.The mice were fed with a high-fat diet to induce an atherosclerosis model,and treated with OA by gastric gavage.The mice were divided into the control group,the model group,and the OA administration group.The blood lipid and plaque formation in mice were detected.In addition,oxidative stress and mitochondrial structure and function changes in cells and mice were evaluated by transmission electron microscopy,JC-1 fluorescent probe,and Western blotting assays.The expression levels of proteins in the AMPK/Drp1 pathway were examined through Western blot.Results:OA markedly increased cell viability and migration rate of HUVECs,and decreased the adhesion rate of THP-1 cells and the apoptosis rate.OA significantly reduced serum lipid levels,such as total cholesterol and triglyceride,in mice and inhibited plaque formation in the aorta.OA also significantly increased the content of superoxide dismutase and catalase,alleviated mitochondrial damage,such as mitochondrial swelling and mitochondrial cristae reduction,reduced the number of mitochondria,increased adenosine triphosphate content,and significantly reduced p-Drp1(Ser616)/Drp1,MFF and FIS1 levels,increased p-AMPK/AMPK levels,activated AMPK,and then regulated DRP1 activity.Conclusions:OA activates AMPK,which in turn regulates the activity of DRP1 to restore normal mitochondrial dynamics and reduce atherosclerosis.
基金supported by the College of Oral Medicine,Taipei Medical University,Taipei,Taiwan(Grant No.TMUCOM202502)supported by Taipei Medical University Hospital,Taipei,Taiwan(Grant No.114TMUH-NE-05).
文摘This narrative review examines recent advances in salivary biomarkers for oral squamous cell carcinoma(OSCC),a major subtype of oral cancer with persistently low five-year survival rates due to delayed diagnosis.Saliva has emerged as a noninvasive diagnostic medium capable of reflecting both local tumor activity and systemic physiological changes.Various salivary biomarkers,including microRNAs,cytokines,proteins,metabolites,and exosomes,have been linked to oncogenic signaling pathways involved in tumor progression,immune modulation,and therapeutic resistance.Advances in quantitative polymerase chain reaction,mass spectrometry,and next-generation sequencing have enabled comprehensive biomarker profiling,while point-of-care detection systems and saliva-based omics platforms are accelerating clinical translation.Remaining challenges include variability in salivary composition,lack of standardized collection protocols,and insufficient validation across large patient cohorts.This review highlights the mechanistic relevance,diagnostic potential,and translational challenges of salivary biomarkers in OSCC.
文摘Background:Epidemiological studies have confirmed that longer exposure to insecticides like cypermethrin(CYP)significantly increases the risk of male reproductive toxicity.Crocus sativus L.has been recognized due to its therapeutic properties,but its exact role and molecular mechanisms in treatment of reproductive dysfunction remain unclear.Methods:During this study,36 rats were randomly divided into six groups(n=6):control,CYP-induced(60 mg/kg),standard(leuprolide 3 mg/kg)and three treatment groups receiving aqueous,ethanolic,and oil extracts(50 mg/kg or 20 mL/kg)for post-toxicity induction.Results:The finding represented that exposure of CYP significantly increased oxidative stress,disrupted testicular architecture,and markedly reduced testosterone levels(P<0.05).Importantly,Crocus sativus L.treatment alleviated these changes by increasing the expression of Nrf2(nuclear factor erythroid 2-related factor 2),restoring the activity of antioxidant enzymes,and enhancing testicular histomorphology.Surprisingly,molecular docking established a high binding affinity of Crocus sativus L.phytoconstituents such as gallic acid,cinnamic acid and quercetin to the Nrf2-Keap1 complex.It is worth noting that,Crocus sativus L.exhibited a high level of protection against reproductive toxicity caused by CYP in male rats,which was mediated by the activation of Nrf2 pathway,reduction of oxidative damage,and favorable ADMET characteristics.Conclusion:Notably,this research provides a more valid,safe,and effective method of developing new drugs for reproductive disorders,however,further investigation is needed to support the research findings and implement it in clinical practice.
基金funded by the Yancheng Municipal Health Commission 2024 Medical Research Project(YK2024166).
文摘Objective:To investigate the anti-atherosclerosis effect of chikusetsusaponinⅣ(CSⅣ)against high-fat diet-induced atherosclerosis in rats.Methods:A high-fat diet was used for the induction of atherosclerosis in rats,and the rats received oral CSⅣor atorvastatin.The body weight,organ weights,food intake,calorie intake,lipid parameters,3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)/mevalonate ratio,collagen,free fatty acid,cardiac parameters,apolipoprotein(A and B),antioxidant parameters,inflammatory cytokines,and inflammatory parameters were assessed.The mRNA expressions of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),IL-6,IL-17,PI3K,AKT,and mTOR were estimated.Results:CSⅣsignificantly modulated food intake,body weight,organ weight(liver,kidney,and heart),and calories(P<0.05).Total cholesterol,triglycerides,very low-density lipoprotein cholesterol,low-density lipoprotein cholesterol,cardiovascular risk index-1,and cardiovascular risk index-2 were decreased,while high-density lipoprotein cholesterol and anti-atherogenic index were increased significantly in the CSⅣgroup(P<0.05).Besides,CSⅣsignificantly restored the level of HMG-CoA/mevalonate ratio,collagen,free fatty acid,cardiac parameters(creatinine kinase-MB,lactate dehydrogenase,cTnT,cTnI),apolipoprotein(apolipoprotein A and apolipoprotein B),antioxidant parameters(MDA,CAT,GPx,GSH,SOD),inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-10),inflammatory parameters(COX-2,TGF-β,NF-κB),intercellular adhesion molecule-1,vascular cell adhesion molecule-1,and monocyte chemoattractant protein-1.CSⅣalso decreased the mRNA expression of IL-1β,TNF-α,IL-6,IL-17,PI3K,AKT,and mTOR.Conclusions:This study showed the anti-atherosclerosis effect of CSⅣagainst high-fat diet-induced atherosclerosis in rats via alteration of NF-κB/COX-2 and PI3K/AKT/mTOR signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant No.82274442)the Key Research Project in Traditional Chinese Medicine of Tianjin Municipal Health Commission(Grant No.202007)the Integrated Traditional Chinese and Western Medicine Research Project of Tianjin Municipal Health Commission(Grant No.2023134).
文摘Background:The development of gastric cancer(GC)encompasses precancerous conditions like chronic atrophic gastritis(CAG)and premalignant lesions of gastric cancer(PLGC).In these situations,abnormal Notch signaling results in mucosal impairment and the initiation of cancer.Banxia Xiexin Decoction(BXD),a well-known formula in traditional Chinese medicine(TCM),shows promise in treating gastric disorders,but its mechanisms in gastric restoration remain unclear.Methods:Using MNNG-induced CAG and PLGC rat models,BXD was administered for 12 weeks.Gastric mucosal pathology was assessed via hematoxylin-eosin staining.Proliferation(Ki-67)and angiogenesis(VEGFA)markers were evaluated by immunohistochemistry.Network pharmacology identified BXD’s targets and pathways.Notch pathway components(Notch1,Jagged1,Dll4,Hes1)were analyzed via qPCR,Western blot,and immunohistochemistry.Results:BXD significantly ameliorated mucosal atrophy,glandular structural disorder,and dysplasia in CAG and PLGC rats.Network pharmacology revealed 323 overlapping targets between BXD and PLGC,with Notch signaling as a central pathway.BXD downregulated Notch1,Jagged1,Dll4,and Hes1 expression at transcriptional and protein levels,suppressed Ki-67(proliferation)and VEGFA(angiogenesis)overexpression,and restored gastric mucosal integrity.Conclusion:BXD inhibits Notch signaling,reduces aberrant proliferation and angiogenesis,and interrupts Correa’s gastric carcinogenesis cascade.This study provides mechanistic evidence supporting BXD as a TCM-based intervention for gastric precancerous lesions.
基金supported by the National Science Foundation of China(No.82405004,82474253)the Natural Science Foundation postdoctoral project of Chongqing(CSTB2022NSCQ-BHX0709)+2 种基金Chongqing Wanzhou District doctoral“through train”scientific research project(wzstc-20220124)Natural Science Foundation of Chongqing,China(No.Cstc2021jcyj-msxmX0996)Chongqing Wanzhou District Science and Health Joint Medical Research Project(wzstc-kw2023032)。
文摘Background:ZhiZi-BoPi Decoction(ZZBPD),a traditional prescription for liver and gallbladder protection,has garnered significant clinical interest due to its hepatoprotective properties.Despite its proven efficacy in mitigating intrahepatic cholestasis,the precise mechanisms underlying its therapeutic effects remain inadequately understood.This study aims to comprehensively investigate the pharmacological mechanisms underlying the therapeutic effects of ZZBPD in cholestatic liver injury(CLI).Methods:Firstly,we evaluated the hepatoprotective effects of ZZBPD on mice with CLI induced byα-naphthylisothiocyanate(ANIT),by measuring biochemical markers,inflammatory factors,and bile acid levels.Subsequently,we employed network pharmacology and single-cell RNA sequencing(scRNA-seq)to identify key targets and potential signaling pathways for the prevention and treatment of CLI.Finally,we further validated the mechanism of action of ZZBPD on these key targets through molecular docking,western blotting,and immunofluorescence techniques.Results:ZZBPD notably improved serum liver function,reduced hepatic inflammation,and restored bile acid balance.Through network pharmacology and scRNA-seq analysis,48 core targets were identified,including TNF,IL-6,and NFKB1,all of which are linked to the IL-17 and NF-κB signaling pathways,as shown by KEGG enrichment analysis.Molecular docking further confirmed stable interactions between ZZBPD’s key active components and molecules such as IL-6,IL-17,and NF-κB.Additionally,western blotting and immunofluorescence validated the downregulation of IL-17 and NF-κB protein expression in liver tissue.Conclusion:ZZBPD effectively treats CLI by activating pathways related to the bile acid receptor FXR,while also modulating the IL-17/NF-κB signaling pathway.This dual action enhances bile secretion and alleviates liver inflammation.These findings offer important insights into the pharmacological mechanisms of ZZBPD and underscore its potential as a promising therapeutic for CLI.
基金funded by Shanghai Yangpu District Science and Technology Commission(Grant No.YPQ202303(Xuejing Lin))Shanghai Yangpu Hospital Foundation(Grant No.Se1202420(Wenchao Wang)and Ye1202423(Juan Huang)).
文摘Background:Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related mortality worldwide.This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms,with a particular focus on mitochondrial function and apoptosis.Methods:Differential expression analyses were performed across three datasets—The Cancer Genome Atlas(TCGA)-Liver Hepatocellular Carcinoma(LIHC),GSE36076,and GSE95698—to identify overlapping differentially expressed genes(DEGs).A prognostic risk model was then constructed.Cysteine/serine-rich nuclear protein 1(CSRNP1)expression levels in HCC cell lines were assessed via western blot(WB)and quantitative reverse transcription polymerase chain reaction(qRT-PCR).The effects of CSRNP1 knockdown or overexpression on cell proliferation,migration,and apoptosis were evaluated using cell counting-8(CCK-8)assays,Transwell assays,and flow cytometry.Mitochondrial ultrastructure was examined by transmission electron microscopy,and intracellular and mitochondrial reactive oxygen species(mROS)levels were measured using specific fluorescent probes.WB was used to assess activation of the c-Jun N-terminal kinase(JNK)/p38 mitogen-activated protein kinase(MAPK)pathway,and pathway dependence was examined using the ROS scavenger N-Acetylcysteine(NAC)and the JNK inhibitor SP600125.Results:A six-gene prognostic model was established,comprising downregulated genes(NR4A1 and CSRNP1)and upregulated genes(CENPQ,YAE1,FANCF,and POC5)in HCC.Functional experiments revealed that CSRNP1 knockdown promoted the proliferation of HCC cells and suppressed their apoptosis.Conversely,CSRNP1 overexpression impaired mitochondrial integrity,increased both mitochondrial and cytoplasmic ROS levels,and activated the JNK/p38 MAPK pathway.Notably,treatment with NAC or SP600125 attenuated CSRNP1-induced MAPK activation and apoptosis.Conclusion:CSRNP1 is a novel prognostic biomarker and tumor suppressor in HCC.It exerts anti-tumor effects by inducing oxidative stress and activating the JNK/p38 MAPK pathway in a ROS-dependent manner.These findings suggest that CSRNP1 may serve as a potential therapeutic target in the management of HCC.
基金supported by the National Natural Science Foundation of China,No.81571211(to FL)the Natural Science Foundation of Shanghai,No.22ZR1476800(to CH)。
文摘Peripheral nerve defect repair is a complex process that involves multiple cell types;perineurial cells play a pivotal role.Hair follicle neural crest stem cells promote perineurial cell proliferation and migration via paracrine signaling;however,their clinical applications are limited by potential risks such as tumorigenesis and xenogeneic immune rejection,which are similar to the risks associated with other stem cell transplantations.The present study therefore focuses on small extracellular vesicles derived from hair follicle neural crest stem cells,which preserve the bioactive properties of the parent cells while avoiding the transplantation-associated risks.In vitro,small extracellular vesicles derived from hair follicle neural crest stem cells significantly enhanced the proliferation,migration,tube formation,and barrier function of perineurial cells,and subsequently upregulated the expression of tight junction proteins.Furthermore,in a rat model of sciatic nerve defects bridged with silicon tubes,treatment with small extracellular vesicles derived from hair follicle neural crest stem cells resulted in higher tight junction protein expression in perineurial cells,thus facilitating neural tissue regeneration.At 10 weeks post-surgery,rats treated with small extracellular vesicles derived from hair follicle neural crest stem cells exhibited improved nerve function recovery and reduced muscle atrophy.Transcriptomic and micro RNA analyses revealed that small extracellular vesicles derived from hair follicle neural crest stem cells deliver mi R-21-5p,which inhibits mothers against decapentaplegic homolog 7 expression,thereby activating the transforming growth factor-β/mothers against decapentaplegic homolog signaling pathway and upregulating hyaluronan synthase 2 expression,and further enhancing tight junction protein expression.Together,our findings indicate that small extracellular vesicles derived from hair follicle neural crest stem cells promote the proliferation,migration,and tight junction protein formation of perineurial cells.These results provide new insights into peripheral nerve regeneration from the perspective of perineurial cells,and present a novel approach for the clinical treatment of peripheral nerve defects.
基金supported by the National Natural Science Foundation of China(No.81000047)Hubei Natural Science Foundation(No.2014CFB437)
文摘CD151 is a member of the tetraspanin family that is implicated as a promoter of pathological or physiological angiogenesis. C-Met is expressed on a variety of cells including vascular endothelial cells(VECs) and up-regulated during angiogenesis. In this study, we investigated whether CD151 regulated migration, proliferation, tube formation and angiogenesis of human umbilical VECs(HUVECs) with activation of C-Met. Moreover, we studied whether CD151 could affect the angiogenic molecules such as nitric oxide(NO), vascular cell adhesion molecule-1(VCAM-1) and vascular endothelial growth factor(VEGF). The expression of CD151 was determined by Western blotting. The cell proliferation assay was performed using the cell counting kit-8(CCK-8) method and cell migration was assessed in microchemotaxis chambers by using fetal bovine serum(FBS) as the chemotactic stimulus. The angiogenic molecules were evaluated using ELISA. The NO level was detected using NO detection kit. The potential involvement of various signaling pathways was explored using relevant antibodies. We found that proliferation, migration and tube formation of HUVECs were promoted by CD151 with activation of C-Met, FAK and CDC42, while they were suppressed with CD151 knockdown by RNAi. Similarly, the levels of NO, VCAM-1 and VEGF in HUVECs were increased by CD151, but they were inhibited with CD151 knockdown by RNAi. These data suggested that CD151 could promote migration, proliferation, tube formation and angiogenesis of HUVECs, which was possibly related to the C-Met signaling pathways.
基金Supported by grants from the National Natural Sciences Foundation of China(No.81060188 and No.81260351)Guangxi Sciense&Technology Development Funds(No.2015139 and No.201017)
文摘Objective This study aimed to study the role of the HGF/c-Met signaling pathway in crizotinib-induced apoptosis of various lung adenocarcinoma cell lines and xenograft tumor models.Methods In vitro, H2228, H1993, and A549 cells were treated with crizotinib. The inhibition of proliferation was quantitated by a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay. Apoptosis was quantified by flow cytometry. Expression of key proteins of the HGF/c-Met signaling pathway was examined by western blotting. In vivo, H1993 and A549 tumor cell xenograft models were established. Immunohistochemical analysis was used to determine protein expression of HGF and c-MET and the amount of phospho-c-MET(p-c-Met). Real-time quantitative polymerase chain reaction(PCR) was applied to examine the messenger RNA(m RNA) expression of c-MET and serine/threonine protein kinase(AKT). The expression and activation of the key proteins were evaluated by western blotting.Results In vitro, the growth of H1993, H2228, and A549 cells was inhibited after crizotinib treatment for 72 h. Apoptotic rates of H1993 and H2228 cells increased with the crizotinib concentration and exposure time. In vivo, the growth-inhibitory rate of crizotinib for H1993 xenografts was 72.3%. Positive expression rates of HGF and c-MET in H1993 xenografts were higher than those in A549 xenografts; the p-c-MET amount was the largest in H1993 xenograft control but the lowest in the H1993 xenograft with crizotinib treatment. The m RNA expression levels of c-MET and AKT in H1993 xenografts were higher than those of A549 xenografts. The protein levels of c-MET, AKT, and extracellular regulated protein kinases(ERK) in H1993 xenografts were higher than those in A549 xenografts; the p-AKT amount was higher in H1993 xenograft control than in A549 xenografts; the largest amount of p-c-MET was detected in H1993 xenograft control; the amount of p-ERK was the lowest in the H1993 xenograft with crizotinib treatment.Conclusion The HGF/c-Met signaling pathway may mediate crizotinib-induced apoptosis and inhibition of proliferation of lung adenocarcinoma cells.
基金supported by Scientific and Technology Projects of Henan Province(142102310137)Science and Technology Development Project of Luoyang City(1603001A-3)
文摘OBJECTIVE Metastasis-associated in colon cancer-1(MACC1)is an oncogene that has been newly identified.It promotes tumor proliferation and invasion via the MET pathway.Our study investigated the effects of Saikosaponin-b(SS-b)on the proliferation and apoptosis of HepG2 cells and its regulation on MACC1/c-Met/Akt signaling pathway.METHODS HepG2 cells were treated with SS-b(10-800 g·L^(-1))for 48 h in vitro.The CCK-8 assay was used to assess cell proliferation,and cell apoptosis was determined by Hoechst33258 staining,AnnexinⅤ/PI staining and caspase 3 assay.RT-PCR was used to examine the expression of MACC1,c-MET and hepatocyte growth factor(HGF)mR NA.MACC1 protein was detected by Western blot and immunohistochemistry.The protein expressions of p-cMET,c-MET,p-AKT,AKT,p-BAD,BAD were measured by Western blot.RESULTS SS-b inhibited the growth of HepG2 cells in dose-dependent way and induced cell apoptosis significantly.HepG2 cells showed karyopyknosis,fragmentation and fluorescence highlight in SS-b treatment group.FCM results showed that apoptosis rate of HepG2 cells increased with SS-b concentration.The immunofluorescence results showed that the MACC1 expression decreased significantly in HepG2 cells treated with SS-b.The expression levels of MACC1,c-MET and HGF mR NA in HepG2 cells were significantly inhibited by SS-b.SS-b also significantly decreased the protein expressions of MACC1,p-c-MET and p-AKT while increased the expression of p-BAD and caspase 3 in HepG2 cells(P<0.05).CONCLUSION SS-b inhibited the proliferation and induced the apoptosis of HepG2 cells by targeting the MACC1/c-Met/Akt signaling pathway.