Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in eac...Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.展开更多
Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limite...Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limited set of genes suitable for clinical implementation.Methods:We utilized an integrated dataset of 1360 whole-exome and whole-genome sequences from Chinese and Western PCa cohorts to develop and evaluate the model.External validation was conducted using an independent cohort of patients.A graph neural network architecture,termed the pathway-aware multi-layered hierarchical network-Western and Asian(P-NETwa),was developed and trained on combined genomic profiles from Chinese and Western cohorts.The model employed a multilayer perceptron(MLP)to identify key signature genes from multiomics data,enabling precise prediction of PCa metastasis.Results:The model achieved an accuracy of 0.87 and an F1-score of 0.85 on Western population datasets.The application of integrated Chinese and Western population data improved the accuracy to 0.88,achieving an F1-score of 0.75.The analysis identified 18 signature genes implicated in PCa progression,including established markers(AR and TP53)and novel candidates(MUC16,MUC4,and ASB12).For clinical adoption,the model was optimized for commercially available gene panels while maintaining high classification accuracy.Additionally,a user-friendly web interface was developed to facilitate real-time prediction of primary versus metastatic status using the pre-trained P-NETwa-MLP model.Conclusion:The P-NETwa-MLP model integrates a query system that allows for efficient retrieval of prediction outcomes and associated genomic signatures via sample ID,enhancing its potential for seamless integration into clinical workflows.展开更多
As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and am...As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant.展开更多
In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by de...In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by developing a novel iterative algorithm for computing a set of tensor equations. Under some conditions, the existence and uniqueness of this centrality were proven by applying the Brouwer fixed point theorem. Furthermore, the convergence of the proposed iterative algorithm was established. Finally, numerical experiments on a simple multilayer network and two real-world multilayer networks(i.e., Pierre Auger Collaboration and European Air Transportation Networks) are proposed to illustrate the effectiveness of the proposed algorithm and to compare it to other existing centrality measures.展开更多
Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of rece...Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of recent progress in traffic dynamics on multilayer networks.First,we introduce several typical multilayer network models.Then,we present some mainstream performance indicators,such as network capacity,average transmission time,etc.Moreover,we discuss some optimization strategies for improving the transmission performance.Finally,we provide some open issues that could be further explored in the future.展开更多
The formalization of multilayer networks allows for new ways to measure sociality in complex social systems,including groups of animals.The same mathematical representation and methods are widely applicable across fie...The formalization of multilayer networks allows for new ways to measure sociality in complex social systems,including groups of animals.The same mathematical representation and methods are widely applicable across fields and study systems,and a network can represent drastically different types of data.As such,in order to apply analyses and interpret the results in a meaningful way the researcher must have a deep understanding of what their network is representing and what parts of it are being measured by a given analysis.Multilayer social networks can represent social structure with more detail than is often present in single layer networks,including multiple"types"of individuals,interactions,or relationships,and the extent to which these types are interdependent.Multilayer networks can also encompass a wider range of social scales,which can help overcome complications that are inherent to measuring sociality.In this paper,I dissect multilayer networks into the parts that correspond to different components of social structures.I then discuss common pitfalls to avoid across different stages of multilayer network analyses-some novel and some that always exist in social network analysis but are magnified in multi-layer representations.This paper serves as a primer for building a customized toolkit of multilayer network analyses,to probe components of social structure in animal social systems.展开更多
To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with ad...To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with adaptive centers and widths,which is composed of more than one hidden layer.In the hidden layer of the RBF-activated MLP network(MLPRBF),the outputs of the preceding layer are first linearly transformed and then fed into the univariate Gaussian RBF,which exploits the highly nonlinear property of RBF.Adaptive RBFs might address the issues of saturated outputs,low sensitivity,and vanishing gradients in MLPs activated by other prevailing nonlinear functions.Finally,we apply four MLP networks with the rectified linear unit(ReLU),sigmoid function(sigmoid),hyperbolic tangent function(tanh),and Gaussian RBF as the activation functions to approximate the one-dimensional(1D)sinusoidal function,the analytical solution of viscous Burgers’equation,and the two-dimensional(2D)steady lid-driven cavity flows.Using the same network structure,MLP-RBF generally predicts more accurately and converges faster than the other threeMLPs.MLP-RBF using less hidden layers and/or neurons per layer can yield comparable or even higher approximation accuracy than other MLPs equipped with more layers or neurons.展开更多
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data ...In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.展开更多
Social organisms often show collective behaviors such as group foraging or movement.Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals.When social...Social organisms often show collective behaviors such as group foraging or movement.Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals.When social interactions change over time,collective behaviors may change because these behaviors emerge from interactions among individuals.Despite the importance of,and growing interest in,the temporal dynamics of social interactions,it is not clear how to quantify changes in interactions over time or measure their stability.Furthermore,the temporal scale at which we should observe changes in social networks to detect biologically meaningful changes is not always apparent.Here we use multilayer network analysis to quantify temporal dynamics of social networks of the social spider Stegodyphus dumicola and determine how these dynamics relate to individual and group behaviors.We found that social interactions changed over time at a constant rate.Variation in both network structure and the identity of a keystone individual was not related to the mean or variance of the collective prey attack speed.Individuals that maintained a large and stable number of connections,despite changes in network structure,were the boldest individuals in the group.Therefore,social interactions and boldness are linked across time,but group collective behavior is not influenced by the stability of the social network.Our work demonstrates that dynamic social networks can be modeled in a multilayer framework.This approach may reveal biologically important temporal changes to social structure in other systems.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models o...Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.展开更多
The development of multilayer network techniques is a boon for researchers who wish to understand how different interaction layers might influence each other,and how these in turn might influence group dynamics.Here,w...The development of multilayer network techniques is a boon for researchers who wish to understand how different interaction layers might influence each other,and how these in turn might influence group dynamics.Here,we investigate how integration between male and female grooming and aggression interaction networks influences male power trajectories in vervet monkeys Chlorocebus pygerythrus.Our previous analyses of this phenomenon used a monolayer approach,and our aim here is to extend these analyses using a dynamic multilayer approach.To do so,we constructed a temporal series of male and female interaction layers.We then used a multivariate multilevel autoregression model to compare cross-lagged associations between a male's centrality in the female grooming layer and changes in male Elo ratings.Our results confirmed our original findings:changes in male centrality within the female grooming network were weakly but positively tied to changes in their Elo ratings.However,the multilayer network approach offered additional insights into this social process,identifying how changes in a male's centrality cascade through the other network layers.This dynamic view indicates that the changes in Elo ratings are likely to be short-lived,but that male centrality within the female network had a much stronger impact throughout the multilayer network as a whole,especially on reducing intermale aggression(i.e.,aggression directed by males toward other males).We suggest that multilayer social network approaches can take advantage of increased amounts of social data that are more commonly collected these days,using a variety of methods.Such data are inherently multilevel and multilayered,and thus offer the ability to quantify more precisely the dynamics of animal social behaviors.展开更多
Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember ...Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).展开更多
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf...Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.展开更多
With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also...With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.展开更多
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c...The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.展开更多
The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control ...The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control models are based on the single layer network architecture,and the sendersand receivers are directly connected by one pair of routers.With the network architecture being moreand more complex,it is a serious problem how to cooperate many routers working in the multilayernetwork simultaneously.In this paper,an effective Active Queue Management(AQM)scheme toguarantee the stability by the nonlinear control of imposing some restrictions on AQM parameter inmultilayer network is proposed.The nonlinear control can rely on some heuristics and network trafficcontrollers that appear to be highly correlated with the multilayer network status.The proposedmethod is based on the improved classical Random Early Detection(RED)differential equation and atheorem for network congestion control.The theorem proposed in the paper proved that the stability ofthe fluid model can effectively ensure the convergence of the average rate to its equilibrium pointthrough many routers in multilayer network.Moreover,when the network capacity is larger,theproposed scheme can still approach to the fullest extensibility of utilization and ensure the stability ofthe fluid model.The paper reveals the reasons of congestion control in multilayer network,provides atheorem for avoiding network congestion,and gives simulations to verify the results.展开更多
The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite ...The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61763009 and 72172025)。
文摘Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.
基金supported by the National Key R&D Program of China(2022YFA1305700 to Li J)the“Dawn”Program of Shanghai Education Commission,China(21SG33 to Li J)The National Natural Science Foundation of China(82272793 to Gao X).
文摘Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limited set of genes suitable for clinical implementation.Methods:We utilized an integrated dataset of 1360 whole-exome and whole-genome sequences from Chinese and Western PCa cohorts to develop and evaluate the model.External validation was conducted using an independent cohort of patients.A graph neural network architecture,termed the pathway-aware multi-layered hierarchical network-Western and Asian(P-NETwa),was developed and trained on combined genomic profiles from Chinese and Western cohorts.The model employed a multilayer perceptron(MLP)to identify key signature genes from multiomics data,enabling precise prediction of PCa metastasis.Results:The model achieved an accuracy of 0.87 and an F1-score of 0.85 on Western population datasets.The application of integrated Chinese and Western population data improved the accuracy to 0.88,achieving an F1-score of 0.75.The analysis identified 18 signature genes implicated in PCa progression,including established markers(AR and TP53)and novel candidates(MUC16,MUC4,and ASB12).For clinical adoption,the model was optimized for commercially available gene panels while maintaining high classification accuracy.Additionally,a user-friendly web interface was developed to facilitate real-time prediction of primary versus metastatic status using the pre-trained P-NETwa-MLP model.Conclusion:The P-NETwa-MLP model integrates a query system that allows for efficient retrieval of prediction outcomes and associated genomic signatures via sample ID,enhancing its potential for seamless integration into clinical workflows.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62371253)the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1179)。
文摘As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant.
基金Project supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.AE91313/001/016)the National Natural Science Foundation of China(Grant No.11701097)the Natural Science Foundation of Jiangxi Province,China(Grant No.20161BAB212055)
文摘In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by developing a novel iterative algorithm for computing a set of tensor equations. Under some conditions, the existence and uniqueness of this centrality were proven by applying the Brouwer fixed point theorem. Furthermore, the convergence of the proposed iterative algorithm was established. Finally, numerical experiments on a simple multilayer network and two real-world multilayer networks(i.e., Pierre Auger Collaboration and European Air Transportation Networks) are proposed to illustrate the effectiveness of the proposed algorithm and to compare it to other existing centrality measures.
基金the National Natural Science Foundation of China(Grant No.61304154).
文摘Many real-world networks are demonstrated to either have layered network structures in themselves or interconnect with other networks,forming multilayer network structures.In this survey,we give a brief review of recent progress in traffic dynamics on multilayer networks.First,we introduce several typical multilayer network models.Then,we present some mainstream performance indicators,such as network capacity,average transmission time,etc.Moreover,we discuss some optimization strategies for improving the transmission performance.Finally,we provide some open issues that could be further explored in the future.
文摘The formalization of multilayer networks allows for new ways to measure sociality in complex social systems,including groups of animals.The same mathematical representation and methods are widely applicable across fields and study systems,and a network can represent drastically different types of data.As such,in order to apply analyses and interpret the results in a meaningful way the researcher must have a deep understanding of what their network is representing and what parts of it are being measured by a given analysis.Multilayer social networks can represent social structure with more detail than is often present in single layer networks,including multiple"types"of individuals,interactions,or relationships,and the extent to which these types are interdependent.Multilayer networks can also encompass a wider range of social scales,which can help overcome complications that are inherent to measuring sociality.In this paper,I dissect multilayer networks into the parts that correspond to different components of social structures.I then discuss common pitfalls to avoid across different stages of multilayer network analyses-some novel and some that always exist in social network analysis but are magnified in multi-layer representations.This paper serves as a primer for building a customized toolkit of multilayer network analyses,to probe components of social structure in animal social systems.
基金This work was partially supported by the research grant of the National University of Singapore(NUS),Ministry of Education(MOE Tier 1).
文摘To improve the performance of multilayer perceptron(MLP)neural networks activated by conventional activation functions,this paper presents a new MLP activated by univariate Gaussian radial basis functions(RBFs)with adaptive centers and widths,which is composed of more than one hidden layer.In the hidden layer of the RBF-activated MLP network(MLPRBF),the outputs of the preceding layer are first linearly transformed and then fed into the univariate Gaussian RBF,which exploits the highly nonlinear property of RBF.Adaptive RBFs might address the issues of saturated outputs,low sensitivity,and vanishing gradients in MLPs activated by other prevailing nonlinear functions.Finally,we apply four MLP networks with the rectified linear unit(ReLU),sigmoid function(sigmoid),hyperbolic tangent function(tanh),and Gaussian RBF as the activation functions to approximate the one-dimensional(1D)sinusoidal function,the analytical solution of viscous Burgers’equation,and the two-dimensional(2D)steady lid-driven cavity flows.Using the same network structure,MLP-RBF generally predicts more accurately and converges faster than the other threeMLPs.MLP-RBF using less hidden layers and/or neurons per layer can yield comparable or even higher approximation accuracy than other MLPs equipped with more layers or neurons.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金Heilongjiang Natural Science Foundation (F0318).
文摘In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.
基金This work was supported by the National Science Foundation IOS grant 1456010the National Institute of Health grant GM115509 to N.P.-W.
文摘Social organisms often show collective behaviors such as group foraging or movement.Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals.When social interactions change over time,collective behaviors may change because these behaviors emerge from interactions among individuals.Despite the importance of,and growing interest in,the temporal dynamics of social interactions,it is not clear how to quantify changes in interactions over time or measure their stability.Furthermore,the temporal scale at which we should observe changes in social networks to detect biologically meaningful changes is not always apparent.Here we use multilayer network analysis to quantify temporal dynamics of social networks of the social spider Stegodyphus dumicola and determine how these dynamics relate to individual and group behaviors.We found that social interactions changed over time at a constant rate.Variation in both network structure and the identity of a keystone individual was not related to the mean or variance of the collective prey attack speed.Individuals that maintained a large and stable number of connections,despite changes in network structure,were the boldest individuals in the group.Therefore,social interactions and boldness are linked across time,but group collective behavior is not influenced by the stability of the social network.Our work demonstrates that dynamic social networks can be modeled in a multilayer framework.This approach may reveal biologically important temporal changes to social structure in other systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871046).
文摘Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.
基金This work was funded by NRH(South Africa)and UNISA awards(S.P.H.),NSERC(Canada)Discovery grants(L.B.,S.P.H.)the NSERC Canada Research Chair program(L.B.)+2 种基金C.Y.is the recipient of a University of Pretoria Senior Postdoctoral FellowshipT.B.has been funded by an FQNRT Post-Doctoral FellowshipT.B.and C.V.are currently funded by NSERC Canada Research Chair and Discovery Grants held by L.B.
文摘The development of multilayer network techniques is a boon for researchers who wish to understand how different interaction layers might influence each other,and how these in turn might influence group dynamics.Here,we investigate how integration between male and female grooming and aggression interaction networks influences male power trajectories in vervet monkeys Chlorocebus pygerythrus.Our previous analyses of this phenomenon used a monolayer approach,and our aim here is to extend these analyses using a dynamic multilayer approach.To do so,we constructed a temporal series of male and female interaction layers.We then used a multivariate multilevel autoregression model to compare cross-lagged associations between a male's centrality in the female grooming layer and changes in male Elo ratings.Our results confirmed our original findings:changes in male centrality within the female grooming network were weakly but positively tied to changes in their Elo ratings.However,the multilayer network approach offered additional insights into this social process,identifying how changes in a male's centrality cascade through the other network layers.This dynamic view indicates that the changes in Elo ratings are likely to be short-lived,but that male centrality within the female network had a much stronger impact throughout the multilayer network as a whole,especially on reducing intermale aggression(i.e.,aggression directed by males toward other males).We suggest that multilayer social network approaches can take advantage of increased amounts of social data that are more commonly collected these days,using a variety of methods.Such data are inherently multilevel and multilayered,and thus offer the ability to quantify more precisely the dynamics of animal social behaviors.
文摘Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai (Grant No. 21ZR1444100)
文摘Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1807700the National Natural Science Foundation of China(NSFC)under Grant(No.62201414,62201432)+2 种基金the Qinchuangyuan Project(OCYRCXM-2022-362)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University under Grant YJSJ24017the Guangzhou Science and Technology Program under Grant 202201011732。
文摘With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.
文摘The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics.
基金the National Natural Science Foundation of China(No.60572093)the Specialized Research Fundfor the Doctoral Program of Higher Education(No.20050004016).
文摘The congestion control problem in a single node network has been solved by the nonlinearfeedback control method,which has been proven to be effective and robust for different router’s queuesize.However,these control models are based on the single layer network architecture,and the sendersand receivers are directly connected by one pair of routers.With the network architecture being moreand more complex,it is a serious problem how to cooperate many routers working in the multilayernetwork simultaneously.In this paper,an effective Active Queue Management(AQM)scheme toguarantee the stability by the nonlinear control of imposing some restrictions on AQM parameter inmultilayer network is proposed.The nonlinear control can rely on some heuristics and network trafficcontrollers that appear to be highly correlated with the multilayer network status.The proposedmethod is based on the improved classical Random Early Detection(RED)differential equation and atheorem for network congestion control.The theorem proposed in the paper proved that the stability ofthe fluid model can effectively ensure the convergence of the average rate to its equilibrium pointthrough many routers in multilayer network.Moreover,when the network capacity is larger,theproposed scheme can still approach to the fullest extensibility of utilization and ensure the stability ofthe fluid model.The paper reveals the reasons of congestion control in multilayer network,provides atheorem for avoiding network congestion,and gives simulations to verify the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154)the Key Research and Development Program of Hubei Province,China(Grant No.2023BEB024)+1 种基金the Young and Middle-Aged Scientific and Technological Innovation Team Plan in Higher Education Institutions in Hubei Province,China(Grant No.T2023007)the National Natural Science Foundation of China(Grant No.U23A20318).
文摘The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods.