期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering
1
作者 朱樟明 郝报田 +2 位作者 恩云飞 杨银堂 李跃进 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期509-516,共8页
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising cloc... On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. 展开更多
关键词 interconnect bus dynamic power wire ordering wire spacing nanometer scale process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部