期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of a capillary bundle evaporation advanced mathematical modeling for 1,2-propylene glycol-glycerin mixtures in porous media
1
作者 Bingbing Li Jiantong Li +3 位作者 Side Ren Shuo Gu Zhanjian Liu Liyan Liu 《Chinese Journal of Chemical Engineering》 2025年第4期261-273,共13页
Porous liquid-conducting micro-heat exchangers have garnered considerable attention for their role in efficient heat dissipation in small electronic devices.This demand highlights the need for advanced mathematical mo... Porous liquid-conducting micro-heat exchangers have garnered considerable attention for their role in efficient heat dissipation in small electronic devices.This demand highlights the need for advanced mathematical models to optimize the selection of mixed heat exchange media and equipment design.A capillary bundle evaporation model for porous liquid-conducting media was developed based on the conjugate mass transfer evaporation rate prediction model of a single capillary tube,supplemented by mercury injection experimental data.Theoretical and experimental comparisons were conducted using 1,2-propanediol-glycerol(PG-VG)mixtures at molar ratios of 1:9,3:7,5:5,and 7:3 at 120,150,and 180℃.The Jouyban-Acree model was implemented to enhance the evaporation rate predictions.For the 7:3 PG-VG mixture at 180℃under the experimental conditions of the thermal medium,the model's error reduced from 16.75%to 10.84%post-correction.Overall,the mean relative error decreased from 11.76%to 5.98%after correction. 展开更多
关键词 Evaporation in porous media Capillary bundle model 1 2-propylene glycol-glycerin Evaporation rate
在线阅读 下载PDF
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
2
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability
原文传递
Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST
3
作者 Shanlu GAO Xiaoju LIU +8 位作者 Guozhong DENG Tingfeng MING Guoqiang LI Xuexi ZHANG Xiaodong WU Xiaohe WU Bang LI Haochen FAN Xiang GAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第7期137-147,共11页
An investigation into tungsten(W)impurity behaviors with the update of the EAST lower W divertor for H-mode has been carried out using SOLPS-ITER.This work aims to study the effect of external neon(Ne)impurity seeding... An investigation into tungsten(W)impurity behaviors with the update of the EAST lower W divertor for H-mode has been carried out using SOLPS-ITER.This work aims to study the effect of external neon(Ne)impurity seeding on W impurity sputtering with the bundled charge state model.As the Ne seeding rate increases,plasma parameters,W concentration(C_(W)),and eroded W flux(Γ_(W)^(Ero))at both targets are compared and analyzed between the highly resolved bundled model‘jett’and the full W charge state model.The results indicate that‘jett’can produce divertor behaviors essentially in agreement with the full W charge state model.The bundled scheme with high resolution in low W charge states(<W^(20+))has no obvious effect on the Ne impurity distribution and thus little effect on W sputtering by Ne.Meanwhile,parametric scans of radial particle and thermal transport diffusivities(D_(⊥)andχ_(e,i))in the SOL are simulated using the‘jett’bundled model.The results indicate that the transport diffusivity variations have significant influences on the divertor parameters,especially for W impurity sputtering. 展开更多
关键词 tungsten impurity sputtering bundled charge state model transport diffusivity SOLPS-ITER
在线阅读 下载PDF
Mechanical properties and enhanced soil shear strength of herbaceous plant roots in the alpine meadow layer of the permafrost region on the Qinghai-Xizang Plateau,China 被引量:1
4
作者 HE Dequan LU Haijing +5 位作者 HU Xiasong WANG Cheng LIU Changyi ZHAO Yingxiao LI Shuaifei DENG Taiguo 《Journal of Arid Land》 2025年第4期515-537,共23页
The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in t... The Qinghai-Xizang Plateau of China faces challenges like thaw slumping,threatening slope stability and infrastructure.Understanding the mechanical properties of the roots of the dominant herbaceous plant species in the alpine meadow layer of the permafrost regions on the Qinghai-Xizang Plateau is essential for evaluating their role in enhancing soil shear strength and mitigating slope deformation in these fragile environments.In this study,the roots of four dominant herbaceous plant species—Kobresia pygmaea,Kobresia humilis,Carex moorcroftii,and Leontopodium pusillum—that are widely distributed in the permafrost regions of the Qinghai-Xizang Plateau were explored to determine their mechanical properties and effects in enhancing soil shear strength.Through indoor single root tensile and root group tensile tests,we determined the root diameter,tensile force,tensile strength,tensile ratio,and strength frequency distributions.We also evaluated their contributions to inhibiting slope deformation and failure during the formation and development of thermal thaw slumps in the alpine meadow.The results showed that the distribution of the root diameter of the dominant plant species is mostly normal,while the tensile strength tends to be logarithmically normally distributed.The relationship between the root diameter and root tensile strength conforms to a power function.The theoretical tensile strength of the root group was calculated using the Wu-Waldron Model(WWM)and the Fiber Bundle Model(FBM)under the assumption that the cumulative single tensile strength of the root bundle is identical to the tensile strength of the root group in the WWM.The FBM considers three fracture modes:FBM-D(the tensile force on each single root is proportional to its diameter relative to the total sum of all the root diameters),FBM-S(the cross-sectional stress in the root bundle is uniform),and FBM-N(each tensile strength test of individual roots experiences an equal load).It was found that the model-calculated tensile strength of the root group was 162.60%higher than the test value.The model-derived tensile force of the root group from the FBM-D,FBM-S,and FBM-N was 73.10%,28.91%,and 13.47%higher than the test values,respectively.The additional cohesion of the soil provided by the roots was calculated to be 25.90-45.06 kPa using the modified WWM,67.05-38.15 kPa using the FBM-S,and 57.24-32.74 kPa using the FBM-N.These results not only provide a theoretical basis for further quantitative evaluation of the mechanical effects of the root systems of herbaceous plant species in reinforcing the surface soil but also have practical significance for the effective prevention and control of thermal thaw slumping disasters in the permafrost regions containing native alpine meadows on the Qinghai-Xizang Plateau using flexible plant protection measures. 展开更多
关键词 thaw slumping soil shear strength root-soil composites root tensile force Wu-Waldron model(WWM) Fiber Bundle model(FBM) Qinghai-Xizang Plateau
在线阅读 下载PDF
Accuracy Analysis on Bundle Adjustment of Remote Sensing Images Based on Dual Quaternion 被引量:1
5
作者 盛庆红 费利佳 +2 位作者 柳建锋 陈姝文 王惠南 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期523-529,共7页
A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constrai... A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images. 展开更多
关键词 photogrammetry bundle adjustment geometric correction dual quaternion geometric imaging model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部