The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA...The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.展开更多
Ferroptosis,a type of cell death that mainly involves iron metabolism imbalance and lipid peroxidation,is strongly correlated with the phagocytic response caused by bleeding after spinal cord injury.Thus,in this study...Ferroptosis,a type of cell death that mainly involves iron metabolism imbalance and lipid peroxidation,is strongly correlated with the phagocytic response caused by bleeding after spinal cord injury.Thus,in this study,bulk RNA sequencing data(GSE47681 and GSE5296)and single-cell RNA sequencing data(GSE162610)were acquired from gene expression databases.We then conducted differential analysis and immune infiltration analysis.Atf3 and Piezo1 were identified as key ferroptosis genes through random forest and least absolute shrinkage and selection operator algorithms.Further analysis of single-cell RNA sequencing data revealed a close relationship between ferroptosis and cell types such as macrophages/microglia and their intrinsic state transition processes.Differences in transcription factor regulation and intercellular communication networks were found in ferroptosis-related cells,confirming the high expression of Atf3 and Piezo1 in these cells.Molecular docking analysis confirmed that the proteins encoded by these genes can bind cycloheximide.In a mouse model of T8 spinal cord injury,low-dose cycloheximide treatment was found to improve neurological function,decrease levels of the pro-inflammatory cytokine inducible nitric oxide synthase,and increase levels of the anti-inflammatory cytokine arginase 1.Correspondingly,the expression of the ferroptosis-related gene Gpx4 increased in macrophages/microglia,while the expression of Acsl4 decreased.Our findings reveal the important role of ferroptosis in the treatment of spinal cord injury,identify the key cell types and genes involved in ferroptosis after spinal cord injury,and validate the efficacy of potential drug therapies,pointing to new directions in the treatment of spinal cord injury.展开更多
文摘The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.
基金supported by the National Natural Science Foundation of China,No.81972073(to HZ)a grant from the Taishan Scholars Program ofShandong Province-Young Taishan Scholars,No.tsqn201909197(to HZ)+1 种基金a grant from Tianjin Key Medical Discipline(Specialty)Construct Project,No.TJYXZDXK-027A(to SF)a grant from Academic Expert International Innovation Summit,No.22JRRCRC00010(to SF).
文摘Ferroptosis,a type of cell death that mainly involves iron metabolism imbalance and lipid peroxidation,is strongly correlated with the phagocytic response caused by bleeding after spinal cord injury.Thus,in this study,bulk RNA sequencing data(GSE47681 and GSE5296)and single-cell RNA sequencing data(GSE162610)were acquired from gene expression databases.We then conducted differential analysis and immune infiltration analysis.Atf3 and Piezo1 were identified as key ferroptosis genes through random forest and least absolute shrinkage and selection operator algorithms.Further analysis of single-cell RNA sequencing data revealed a close relationship between ferroptosis and cell types such as macrophages/microglia and their intrinsic state transition processes.Differences in transcription factor regulation and intercellular communication networks were found in ferroptosis-related cells,confirming the high expression of Atf3 and Piezo1 in these cells.Molecular docking analysis confirmed that the proteins encoded by these genes can bind cycloheximide.In a mouse model of T8 spinal cord injury,low-dose cycloheximide treatment was found to improve neurological function,decrease levels of the pro-inflammatory cytokine inducible nitric oxide synthase,and increase levels of the anti-inflammatory cytokine arginase 1.Correspondingly,the expression of the ferroptosis-related gene Gpx4 increased in macrophages/microglia,while the expression of Acsl4 decreased.Our findings reveal the important role of ferroptosis in the treatment of spinal cord injury,identify the key cell types and genes involved in ferroptosis after spinal cord injury,and validate the efficacy of potential drug therapies,pointing to new directions in the treatment of spinal cord injury.