The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag...The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.展开更多
In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of suc...In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.展开更多
Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat ...Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.展开更多
The data measured by using the two-disc tester show that the concentration of EP addi- tives and the viscosity temperature characteristic of lubricant have a cooperation effect on the fric- tion coefficient in boundar...The data measured by using the two-disc tester show that the concentration of EP addi- tives and the viscosity temperature characteristic of lubricant have a cooperation effect on the fric- tion coefficient in boundary lubrication.展开更多
High‐temperature superconducting(HTS)bulks can not only be self‐stable when levitated above a permanent magnet(PM)but also can be used as quasi PM with higher magnetic energy product due to their magnetic flux pinni...High‐temperature superconducting(HTS)bulks can not only be self‐stable when levitated above a permanent magnet(PM)but also can be used as quasi PM with higher magnetic energy product due to their magnetic flux pinning characteristics.Therefore,HTS bulks have wide application potentials in maglev trains,maglev bearings,flywheel energy storage,drug delivery,and high field magnets.In the external magnetic field of common application scenarios,HTS bulks have no external input current,so it is difficult to achieve the overall quench.However,local quenching in the bulk is still possible in the harsh fluctuating external field environment.Although it is difficult to reach the total quench,its critical parameters like Jc will inevitably deteriorate,which may collapse the application system.Therefore,in contrast to superconducting wires and tapes that are more concerned with quench detection,HTS bulks with a 3D volume effect are more focused on internal sensitive temperature locations,the impacts of volume and scale,and the coupling influence on application parameters such as magnetism and force.Therefore,for efficient thermal‐related measurement of HTS bulk applications,this paper investigates and discusses 12 commonly‐used temperature measurement or quench detection methods in all superconducting application fields.These methods primarily refer to the current quench detection technologies used in HTS tapes and wires.From the standpoint of practical temperature measurement requirements of HTS bulks and technological limitations of maglev application scenarios,working characteristics and service conditions of the 12 methods,and 4 temperature detection methods are selected through a comprehensive understanding and comparison of basic principles.They are expected to be used in real‐time monitoring and early warning schemes for onboard superconducting levitation devices of HTS maglev transportation or other applications in the future.展开更多
We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual ...We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual translator power generation system of the proposed concept structure is a linear generator in which both the HTS bulks and armature copper coils move in opposite directions simultaneously.A performance analysis of our linear generator was conducted using a finite‐element electromagnetic field analysis method.The results of the analysis were compared between the HTS dual translator linear power generator and the HTS single translator linear power generator.The maximum electromagnetic force and the average output power of the HTS dual translator are around 5%and 11%higher than that of the HTS single translator.We further present the results of the analysis regarding the influence of reducing the stroke length of the linear generator translator on the output power,where the output power for the HTS dual translator system increased up to a factor of two,in comparison to the HTS single translator counterpart,for the same reduction of stroke length.展开更多
基金the National Natural Science FOundation of China under grant! No.19974041the National Major Fundamental ResearCh Program-Nal
文摘The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.
基金Supported by the Natural Science Foundation of China (Grant No.51375436)Natural Science Foundation of Zhejiang Province (Grant No.Z1100475)Project of Engineering Research Center for Sliding Bearing of Zhejiang Province (Contract No.2012E10028)
文摘In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.
基金This work was supported by National Meg-Science Engineering Project of Chinese Gevernment.
文摘Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.
文摘The data measured by using the two-disc tester show that the concentration of EP addi- tives and the viscosity temperature characteristic of lubricant have a cooperation effect on the fric- tion coefficient in boundary lubrication.
基金supported by the National Natural Science Foundation of China(52077178)the Sichuan Science and Technology Program(22CXRC0217)+1 种基金Fundamental Research Funds for the Central Universities(2682021ZTPY123)the State Key Laboratory of Traction Power at Southwest Jiaotong University(2022TPL_T07).
文摘High‐temperature superconducting(HTS)bulks can not only be self‐stable when levitated above a permanent magnet(PM)but also can be used as quasi PM with higher magnetic energy product due to their magnetic flux pinning characteristics.Therefore,HTS bulks have wide application potentials in maglev trains,maglev bearings,flywheel energy storage,drug delivery,and high field magnets.In the external magnetic field of common application scenarios,HTS bulks have no external input current,so it is difficult to achieve the overall quench.However,local quenching in the bulk is still possible in the harsh fluctuating external field environment.Although it is difficult to reach the total quench,its critical parameters like Jc will inevitably deteriorate,which may collapse the application system.Therefore,in contrast to superconducting wires and tapes that are more concerned with quench detection,HTS bulks with a 3D volume effect are more focused on internal sensitive temperature locations,the impacts of volume and scale,and the coupling influence on application parameters such as magnetism and force.Therefore,for efficient thermal‐related measurement of HTS bulk applications,this paper investigates and discusses 12 commonly‐used temperature measurement or quench detection methods in all superconducting application fields.These methods primarily refer to the current quench detection technologies used in HTS tapes and wires.From the standpoint of practical temperature measurement requirements of HTS bulks and technological limitations of maglev application scenarios,working characteristics and service conditions of the 12 methods,and 4 temperature detection methods are selected through a comprehensive understanding and comparison of basic principles.They are expected to be used in real‐time monitoring and early warning schemes for onboard superconducting levitation devices of HTS maglev transportation or other applications in the future.
基金supported by JSPS KAKENHI Grant Numbers 21H01541(2021‐2024)and SECOM Science and Technology Foundation(2021‐2024).
文摘We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual translator power generation system of the proposed concept structure is a linear generator in which both the HTS bulks and armature copper coils move in opposite directions simultaneously.A performance analysis of our linear generator was conducted using a finite‐element electromagnetic field analysis method.The results of the analysis were compared between the HTS dual translator linear power generator and the HTS single translator linear power generator.The maximum electromagnetic force and the average output power of the HTS dual translator are around 5%and 11%higher than that of the HTS single translator.We further present the results of the analysis regarding the influence of reducing the stroke length of the linear generator translator on the output power,where the output power for the HTS dual translator system increased up to a factor of two,in comparison to the HTS single translator counterpart,for the same reduction of stroke length.